Computational modeling methods,including molecular dynamics(MD)and Monte Carlo(MC)simulations,and density functional theory(DFT),are receiving booming interests for exploring charge storage mechanisms of electrochemic...Computational modeling methods,including molecular dynamics(MD)and Monte Carlo(MC)simulations,and density functional theory(DFT),are receiving booming interests for exploring charge storage mechanisms of electrochemical energy storage devices.These methods can effectively be used to obtain molecular scale local information or provide clear explanations for novel experimental findings that cannot be directly interpreted through experimental investigations.This short review is dedicated to emphasizing recent advances in computational simulation methods for exploring the charge storage mechanisms in typical nanoscale materials,such as nanoporous carbon materials,2 D MXene materials,and metal-organic framework electrodes.Beyond a better understanding of charge storage mechanisms and experimental observations,fast and accurate enough models would be helpful to provide theoretical guidance and experimental basis for the design of new high-performance electrochemical energy storage devices.展开更多
基金funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(grant agreement no.714581)supported by the Fundamental Research Funds for the Central Universities(No.YJ201886)+1 种基金the National Natural Science Foundation of China(No.501902215)Sichuan Science and Technology Program(No.2020ZDZX0005)
文摘Computational modeling methods,including molecular dynamics(MD)and Monte Carlo(MC)simulations,and density functional theory(DFT),are receiving booming interests for exploring charge storage mechanisms of electrochemical energy storage devices.These methods can effectively be used to obtain molecular scale local information or provide clear explanations for novel experimental findings that cannot be directly interpreted through experimental investigations.This short review is dedicated to emphasizing recent advances in computational simulation methods for exploring the charge storage mechanisms in typical nanoscale materials,such as nanoporous carbon materials,2 D MXene materials,and metal-organic framework electrodes.Beyond a better understanding of charge storage mechanisms and experimental observations,fast and accurate enough models would be helpful to provide theoretical guidance and experimental basis for the design of new high-performance electrochemical energy storage devices.