期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
Design and Verification for Dual⁃mode CDFS and High⁃Load Compressor with a Large Flow Regulation Range
1
作者 HUANG Lei ZHANG Jun +2 位作者 HAO Yuyang REN Hongkai CHU Wuli 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期632-644,共13页
This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of ... This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine. 展开更多
关键词 fusion design DUAL-MODE high-load compressor large flow regulation range
下载PDF
Actively tuning anisotropic light-matter interaction in biaxial hyperbolic materialα-MoO_(3) using phase change material VO_(2) and graphene
2
作者 周昆 胡杨 +2 位作者 吴必园 仲晓星 吴小虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期631-638,共8页
Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent prob... Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent problem necessarily to be solved.In this study,we present a theoretical demonstration of actively tuningα-MoO_(3) PhPs using phase change material VO_(2) and graphene.It is observed thatα-MoO_(3) PhPs are greatly dependent on the propagation plane angle of PhPs.The insulator-to-metal phase transition of VO_(2) has a significant effect on the hybridization PhPs of theα-MoO_(3)/VO_(2) structure and allows to obtain actively tunableα-MoO_(3) PhPs,which is especially obvious when the propagation plane angle of PhPs is 900.Moreover,when graphene surface plasmon sources are placed at the top or bottom ofα-MoO_(3) inα-MoO_(3)/VO_(2)structure,tunable coupled hyperbolic plasmon-phonon polaritons inside its Reststrahlen bands(RB s)and surface plasmonphonon polaritons outside its RBs can be achieved.In addition,the above-mentionedα-MoO_(3)-based structures also lead to actively tunable anisotropic spontaneous emission(SE)enhancement.This study may be beneficial for realization of active tunability of both PhPs and SE ofα-MoO_(3),and facilitate a deeper understanding of the mechanisms of anisotropic light-matter interaction inα-MoO_(3) using functional materials. 展开更多
关键词 light-matter interaction hyperbolic material phase change material GRAPHENE
原文传递
The Fusion Model of Catalytic Combustion and Thermal Conductivity
3
作者 Bin Lin Zhengyu Li +5 位作者 Dong Wen Jianchao Liu Shan Yang Yong Zhou Chao Lu Qian Qiu 《Computers, Materials & Continua》 SCIE EI 2023年第1期1509-1521,共13页
The further development of catalytic elements has been plagued by activation and binary problems.The automatic shift model that has emerged in recent years helps components achieve full range.However,the detection dat... The further development of catalytic elements has been plagued by activation and binary problems.The automatic shift model that has emerged in recent years helps components achieve full range.However,the detection data still remains unstable in the shift area(7%∼13%).This paper proposes a Catalytic Combustion and Thermal Conductivity(CCTC)model for the specified range,which can be explained fromtwo aspects based on the existing methods.On the one hand,it uses iterative location search to process heterogeneous data,judges the prediction position of data points,and then givesweight evaluation.On the other hand,it corrects the abnormal points,determines the abnormal points in the horizontal direction,and gives the replacement value through the data of adjacent points.The experimental results show that the CCTC model reduces the sum of variance from 17 of the automatic shift model to 13,and the comparison of experimental variance is reduced by 23%.In the full-scale real-time data,the experimental variance of CCTC model and automatic shift model is reduced by 18%.In conclusion,CCTC is a cross section stability framework for full-scale methane measurement,in which the specified heterogeneous combination and anomaly point correction methods improve the stability. 展开更多
关键词 Catalytic combustion thermal conductivity activation problem binary problem data fusion
下载PDF
Numerical and Experimental Studies of Working Processesin a Cryogenic Fuelling Tank Coupled with Energy Plant
4
作者 UGLANOV D.A. SHIMANOVA A.B. +4 位作者 SHIMANOV A.A. BLAGIN E.V. SARMIN D.V. LIU Junjie ZHENG Guanghua 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第6期2190-2202,共13页
This article presents a device for the storage and gasification of cryogenic working fluid,which is named a cryogenic fuelling tank.A cryogenic fuel tank can serve both as a fuel vessel and a pressure accumulator due ... This article presents a device for the storage and gasification of cryogenic working fluid,which is named a cryogenic fuelling tank.A cryogenic fuel tank can serve both as a fuel vessel and a pressure accumulator due to the regasification process that takes place inside.Application of this tank is slowed by the lack of theoretical and experimental research on its working process.This article deals with an investigation of the working process of the energy plant based on a cryogenic fuel tank coupled with a rotor-vane expander.Developed mathematical models include evaporation and condensation processes within the tank,heat exchange between gas chambers and between the tank and environment,and changes in energy due to incoming and leaving mass.Mechanical work used to determine the efficiency of a power plant is generated by a steam expander.Research shows that it is possible to achieve specific work outputs up to 110-160 kJ/kg with relative deviation of power and specific work determination equal to 1.4% and 1.9%correspondingly. 展开更多
关键词 cryogenic fuelling tank GASIFICATION liquid natural gas low-temperature energy plant
原文传递
Influence of substrate effect on near-field radiative modulator based on biaxial hyperbolic materials
5
作者 刘睿一 刘皓佗 +2 位作者 胡杨 崔峥 吴小虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期56-64,共9页
Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be... Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be used to construct near-field radiative modulators with excellent modulation effects.However,in practical applications,natural hyperbolic materials need to be deposited on the substrate,and the influence of substrate on modulation effect has not been studied yet.In this work,we investigate the influence of substrate effect on near-field radiative modulator based onα-MoO_(3).The results show that compared to the situation without a substrate,the presence of both lossless and lossy substrate will reduce the modulation contrast(MC)for different film thicknesses.When the real or imaginary component of the substrate permittivity increases,the mismatch of hyperbolic phonon polaritons(HPPs)weakens,resulting in a reduction in MC.By reducing the real and imaginary components of substrate permittivity,the MC can be significantly improved,reaching 4.64 forε_(s)=3 at t=10 nm.This work indicates that choosing a substrate with a smaller permittivity helps to achieve a better modulation effect,and provides guidance for the application of natural hyperbolic materials in the near-field radiative modulator. 展开更多
关键词 near-field radiative modulator substrate effect hyperbolic material modulation contrast
原文传递
Reheat effect on the improvement in efficiency of the turbine driven by pulse detonation
6
作者 Junyu Liu Zhiwu Wang +3 位作者 Zixu Zhang Junlin Li Weifeng Qin Jingjing Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期200-210,共11页
Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di... Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine. 展开更多
关键词 Pulse detonation turbine engine Hydrogen detonation Turbine efficiency Reheat effect Multi-cycle detonation
下载PDF
时域谐波平衡求解器中非物理解出现根源探析
7
作者 张森 王丁喜 《风机技术》 2024年第2期44-50,共7页
The time domain harmonic balance method is an attractive reduced order method of analyzing unsteady flow for turbomachines. However, the method can admit non-physical solutions. Non-physical solutions were encountered... The time domain harmonic balance method is an attractive reduced order method of analyzing unsteady flow for turbomachines. However, the method can admit non-physical solutions. Non-physical solutions were encountered from a three-blade-row compressor configuration in a time domain harmonic balance analysis. This paper aims to investigate the root cause of the non-physical solutions. The investigation involves several strategies, which include increasing the number of harmonics, increasing the number of time instants, including scattered modes,including the rotor-rotor interaction, and the use of a new method-the approximate time domain nonlinear harmonic method. Numerical analyses pertinent to each strategy are presented to reveal the root cause of the non-physical solution. It is found that the nonlinear interaction of unsteady flow components with different fundamental frequencies is the cause of the non-physical solution. The non-physical solution can be eliminated by incorporating extra scattered modes or using the approximate time domain nonlinear harmonic method. 展开更多
关键词 The Time Domain Harmonic Balance Method Non-physical Solution Turbomachinery Blade Row Interaction
下载PDF
Dynamics Modeling and Numerical Analysis of Rotor with Elastic Support/Dry Friction Dampers 被引量:3
8
作者 Liao Mingfu Li Yan +1 位作者 Song Mingbo Wang Siji 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期69-83,共15页
The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/p... The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best. 展开更多
关键词 ROTOR system elastic support/dry FRICTION DAMPER FRICTION model rotor′s mode UNBALANCE response
下载PDF
Time-domain CFD computation and analysis of acoustic attenuation performance of water-filled silencers 被引量:2
9
作者 LIU Chen JI Zhen-lin +1 位作者 CHENG Yin-zhong LIUSheng-lan 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2397-2401,共5页
The multi-dimensional time-domain computational fluid dynamics(CFD) approach is extended to calculate the acoustic attenuation performance of water-filled piping silencers. Transmission loss predictions from the time-... The multi-dimensional time-domain computational fluid dynamics(CFD) approach is extended to calculate the acoustic attenuation performance of water-filled piping silencers. Transmission loss predictions from the time-domain CFD approach and the frequency-domain finite element method(FEM) agree well with each other for the dual expansion chamber silencer, straight-through and cross-flow perforated tube silencers without flow. Then, the time-domain CFD approach is used to investigate the effect of flow on the acoustic attenuation characteristics of perforated tube silencers. The numerical predictions demonstrate that the mean flow increases the transmission loss, especially at higher frequencies, and shifts the transmission loss curve to lower frequencies. 展开更多
关键词 water-filled silencer acoustic attenuation performance time-domain CFD approach flow effect perforated tube
下载PDF
Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation 被引量:2
10
作者 胡伟鹏 邓子辰 +1 位作者 韩松梅 范玮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第8期1027-1034,共8页
Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic ... Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors. 展开更多
关键词 MULTI-SYMPLECTIC Landau-Ginzburg-Higgs equation Runge-Kutta method conservation law soliton solution
下载PDF
Development and Analysis of a New Cylindrical Lithium-Ion Battery Thermal Management System 被引量:2
11
作者 Yasong Sun Ruihuai Bai Jing Ma 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期298-312,共15页
With the development of modern technology and economy,environmental protection and sustainable development have become the focus of global attention.The promotion and development of electric vehicles(EVs)have bright p... With the development of modern technology and economy,environmental protection and sustainable development have become the focus of global attention.The promotion and development of electric vehicles(EVs)have bright prospects.However,many challenges need to be faced seriously.Under diferent operating conditions,various safety problems of electric vehicles emerge one after another,especially the hidden danger of battery overheating which threatens the performance of electric vehicles.This paper aims to design and optimize a new indirect liquid cooling system for cylindrical lithium-ion batteries.Various design schemes for diferent cooling channel structures and cooling liquid inlet directions are proposed,and the corresponding solid-fuid coupling model is established.COMSOL Multiphysics simulation software is adopted to simulate and analyze the cooling systems.An approximate model is constructed using the Kriging method,which is considered to optimize the battery cooling system and improve the optimization results.Sensitivity parameter analysis and the optimization design of system structure are performed through a set of infuencing factors in the battery thermal management.The results indicate that the method used in this paper can efectively reduce the maximum core temperature and balance the temperature diferences of the battery pack.Compared with the original design,the optimized design,which is based on the non-dominated sorting genetic algorithm(NSGA-II),has an excellent ability in the optimized thermal management system to dissipate thermal energy and keep the overall cooling uniformity of the battery and thermal management system.Furthermore,the optimized system can also prevent thermal runaway propagation under thermal abuse conditions.In summary,this research can provide some practical suggestions and ideas for the engineering and production applications and structural optimization design carried by electric vehicles. 展开更多
关键词 Cooling system Electric vehicle Kriging approximation Numerical simulation
下载PDF
PID Parameters for Tuning and Optimization of a Turbine EngineBased on the Simplex Search Method 被引量:1
12
作者 ZHANG Hong CAI Yuan-hu CHEN Yu-chun 《International Journal of Plant Engineering and Management》 2009年第4期250-254,共5页
A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control syst... A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization. 展开更多
关键词 turbine engine PID (proportion integral and differential) control simplex search method tuning OPTIMIZATION
下载PDF
Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer
13
作者 侯媛媛 李江红 +3 位作者 冀晓翔 吴亚锋 范玮 Igbari Femi 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期170-173,共4页
Highly efficient and stable hybrid white organic light-emitting diodes (HWOLEDs) with a mixed bipolar interlayer between fluorescent blue and phosphorescent yellow emitting layers are demonstrated. The bipolar inter... Highly efficient and stable hybrid white organic light-emitting diodes (HWOLEDs) with a mixed bipolar interlayer between fluorescent blue and phosphorescent yellow emitting layers are demonstrated. The bipolar interlayer is a mixture of p-type diphenyl (l0-phenyl-lOH-spiro [acridine-9,9'-fluoren]-3Lyl) phosphine oxide and n-type 2',2- (1,3,5-benzinetriyl)-tris(1-phenyl-l-H-benzimidazole). The electroluminance and Commission Internationale de l'Eclairage (CIE1931) coordinates' characteristics can be modulated easily by adjusting the ratio of the hole- predominated material to the electron-predominated material in the interlayer. The hybrid WOLED with a p-type:n-type ratio of 1:3 shows a maximum current efficiency and power efficiency of 61.1 ed/A and 55.8 lm/W, respectively, with warm white CIE coordinates of (0.34, 0.43). The excellent efficiency and adaptive CIE coordi- nates are attributed to the mixed interlayer with improved charge carrier balance, optimized exciton distribution, and enhanced harvesting of singlet and triplet excitons. 展开更多
关键词 with is of by Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer in
原文传递
Key Technology and Experimental Results of the Clean Air Heated Facility for Supersonic Combustion
14
作者 ZHONG Zipeng SONG Wenyan LE Jialing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期760-765,共6页
The scramjet, which is the propulsion of hypersonic vehicle, has become the focus in many military developed countries. The ground tests play an important role in the research of scramjet. There is defect of test medi... The scramjet, which is the propulsion of hypersonic vehicle, has become the focus in many military developed countries. The ground tests play an important role in the research of scramjet. There is defect of test medium contamination (the thermochemical characteristic of the ground test medium is different from that of the flight medium) in existing ground test facilities for scramjet combustor experiment. To solve the problem of test medium contamination, the first clean air heated facility of China for scramjet combustor experiment is designed. The key technology of designing the clean air heated facility is summarized. By using bypass duct, combustor model is protected from high temperature. To reduce the switching time between main duct and bypass duct, solenoid valve and water-cooled system were used. Having centrosymmetric structure, the heat radiating area of the facility and heat loss of the facility are much lower than others. Clean air heated facility is adopted to conduct experiment, which is the first experiment of China in clean air inflow, research on hydrogen-fueled and ethylene-fueled ignition and combustion for scramjet combustor at different equivalence ratio. Successful ignition and sustained combustion of hydrogen has been achieved. Successful ethylene ignition and sustained main stream combustion is achieved with normal fuel injection and taking hydrogen as pilot flame. Experiment result shows that the wall pressure of combustor model rises when the equivalence ratio of hydrogen rises. As the wall pressure of combustor model rises, the pressure disturbance influences the shock train in the upstream. 展开更多
关键词 SCRAMJET clean air resistance heater combustion experiment
下载PDF
Design of Off-grid Home Photovoltaic Power System in Shaanxi Region
15
作者 Ke Cheng Jie Yang Yan Chen 《Energy and Power Engineering》 2013年第4期202-204,共3页
Shaanxi province has three land forms which are Shaanxi’s northern plateau, Guanzhong plain and Qinba mountain land in the south of Shaanxi province. So the climate type is also divided into three types and the solar... Shaanxi province has three land forms which are Shaanxi’s northern plateau, Guanzhong plain and Qinba mountain land in the south of Shaanxi province. So the climate type is also divided into three types and the solar energy resources distribution has a big gap between different regions. PV modules, as the core component of off-grid home photovoltaic power system, their output power are mainly influenced by sun radiation, array tile angle, temperature and so on. Based on the reasons above, in order to apply off-grid home photovoltaic power system in Shaanxi region, this paper designs different systems with different configuration, and makes the performance prediction. The results show that the capacity of PV modules reaches to the largest in Shaanxi northern region, reach minimum in Shaanxi southern region and the output power in the winter is less than in the summer and reach minimum in the spring and autumn. In light of the characteristics above, this research select different type and configuration in different areas systematically, and the performance analysis shows that the configuration can meet the basic life demand of power to the people whose power is not available. 展开更多
关键词 SOLAR PHOTOVOLTAIC POWER Generation OFF-GRID HOME PHOTOVOLTAIC POWER System
下载PDF
Application Research of Off-grid Home Photovoltaic Power System in Shaanxi Northern Region
16
作者 Ke Cheng Liu Hao Jie Yang 《Energy and Power Engineering》 2013年第4期194-197,共4页
Because working performance of off-grid home photovoltaic power system is influenced by factors of solar radiation, ambient temperature and installation angle, this research established power supply model, analyzed wo... Because working performance of off-grid home photovoltaic power system is influenced by factors of solar radiation, ambient temperature and installation angle, this research established power supply model, analyzed working performance and optimized system configuration, by referencing weather conditions of Yulin and Yan’an and those factors. Results showed that under given solar radiation and ambient temperature, difference of installation angle can cause 30% to 40% difference of performance. In order to meet power demand, installation angles of Yulin and Yan'an were selected as 40 degree and 30 degree, and annual output power were 1.44 kWh/Wp and 1.32 kWh/Wp. Based on those results, the configuration of Yulin and Yan'an was 150 Wp and 170 Wp, and annual output power was 172.70 kWh and 179.66 kWh. Systems optimized above can meet the mid-scale demand in Shaanxi northern region and build theoretical foundation of application. 展开更多
关键词 OFF-GRID HOME PHOTOVOLTAIC Power System PHOTOVOLTAIC SOLAR
下载PDF
Numerical Study on the Duct Noise Control of Single-Stage Axial Flow Fan with Wave Leading Edge Stator Blade Configurations 被引量:1
17
作者 Jianxin Lian Hang Tong +2 位作者 Liangji Zhang Weiyang Qiao Weijie Chen 《Journal of Applied Mathematics and Physics》 2023年第8期2503-2514,共12页
This study focuses on a single-stage axial flow fan, investigating the effect of three kinds of wave leading edge stator blades on its noise reduction. The DDES method and the duct acoustic analogy theory based on the... This study focuses on a single-stage axial flow fan, investigating the effect of three kinds of wave leading edge stator blades on its noise reduction. The DDES method and the duct acoustic analogy theory based on the penetrable data surface were used for noise prediction. The results showed that the three kinds of wave leading edge blades were effective in reducing the rotor-stator interaction tonal noise and also have a certain inhibitory effect on broadband noise. The A10W15 stator blade can effectively reduce broadband noise in the frequency range of 2200 - 4200 Hz. When the amplitude is increased to 20, the noise reduction effect is further enhanced. However, when the amplitude is increased to 30, the broadband noise reduction effect is no longer significant. Further research shows that the wave leading edge stator blades can significantly change the pressure fluctuation distribution on the leading edge and suction surface, which control the modal energy distribution. Finally, this paper analyzed multiple factors affecting the broadband noise reduction, such as the noise source cut-off and cut-on effect and correlation. The purpose of this paper is to explore the laws of the influence of wave leading edge blades on the duct noise of real fan, and to reveal its noise control mechanism. . 展开更多
关键词 FAN Wave Leading Edge Blade Duct Noise Broadband Noise Noise Source Analysis
下载PDF
机匣-动叶的相对运动对高负荷涡轮叶顶气热性能的影响 被引量:1
18
作者 杜昆 惠娜 +4 位作者 宋辉 陈磊 张倩 崔亭亭 刘存良 《风机技术》 2023年第1期47-56,共10页
Base on the standard k-ωturbulent model,numerical method for solving three dimensional Reynolds Averaged Navier-Stokes(RANS)was adopted to study the aerothermal characteristics of the turbine blade with casing relati... Base on the standard k-ωturbulent model,numerical method for solving three dimensional Reynolds Averaged Navier-Stokes(RANS)was adopted to study the aerothermal characteristics of the turbine blade with casing relative motion.Experimental data were used to verify the effectiveness of the numerical method and turbulent model.The effect of blade tip clearance,geometry and relative motion on blade tip aerothermal characteristics were analyzed.The numerical results show that for the flat tip,relative motion can effectively suppress tip leakage and reduce leakage vortex size at rotating blade-static casing(BRCS)and static bladerotating casing(BSCR)conditions.A high level of heat transfer region can be observed near the leading edge at the conditions of rotating bladerotating casing(BRCS)and static bladestatic casing(BSCR).The blade tip heat transfer coefficient expands with the increase of tip clearance at different relative motion modes.At the brcs and bscs,the axial average heat transfer trend is the closest when the tip clearance is 1.5%H.The scraping vortex generated by relative motion at brcr and bscs inhib-its the development of leakage flow for squealer tip because of its sealing effect.High level of heat transfer region is also concentrated in the leading edge at brcr and bscs.The size of scraping vortex weakens with the increase of cavity depth.The distribution trend of the average heat transfer coefficient is similar in the two cases of relative static and relative motion,except for the case of 2.5%H cavity depth. 展开更多
关键词 Numerical Simulation Relative Motion Tip Clearance Tip Configuration Heat Transfer Coefficient
下载PDF
Experimental study on the improvement of spray characteristics of aero-engines using gliding arc plasma
19
作者 张磊 张登成 +4 位作者 于锦禄 赵兵兵 屈新宇 陈一 程伟达 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期117-129,共13页
A gliding arc plasma fuel atomization actuator suitable for aeroengines was designed,and a gliding arc plasma fuel spray experimental platform was built to address the fuel atomization problem in aeroengine combustion... A gliding arc plasma fuel atomization actuator suitable for aeroengines was designed,and a gliding arc plasma fuel spray experimental platform was built to address the fuel atomization problem in aeroengine combustion chambers.The spray characteristics for different airflows,fuel flows,and discharge voltages were analyzed using laser particle size analysis.The research shows that the fuel atomization effect is improved from the increased airflow.The decreased fuel flow not only reduces the injection pressure of the fuel but also changes the discharge mode of the gliding arc,which affects reductions in the discharge power and inhibits fuel atomization.Gliding arc discharges accelerate the breaking,atomization,and evaporation of fuel droplets while reducing the particle size,which increases the proportion of small droplets.Compared with the working conditions of plasma-assisted atomization without the gliding arc,the D0.5,D0.9,and average particle size of the fuel droplets are reduced by 4.7%,6.5%,and 4.1%,respectively,when the modulation voltage of the gliding arc power supply is 200 V. 展开更多
关键词 gliding arc discharge spray characteristics droplet size distribution AEROENGINE
下载PDF
Near-Field Thermal Splitter Based on Magneto-Optical Nanoparticles
20
作者 葛文宣 胡杨 +1 位作者 高雷 吴小虎 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第11期66-72,共7页
Based on the many-body radiative heat transfer theory,we investigate a thermal splitter based on three magneto-optical In Sb nanoparticles.The system comprises a source with adjustable parameters and two drains with f... Based on the many-body radiative heat transfer theory,we investigate a thermal splitter based on three magneto-optical In Sb nanoparticles.The system comprises a source with adjustable parameters and two drains with fixed parameters.By leveraging the temperature and magnetic field dependence of the permittivity of In Sb,the direction of heat flux in the system can be controlled by adjusting the magnetic field or temperature at the source.Under magnetic field control,the coupling between the separated modes,and the suppression of the zero-field mode induced by the magnetic field,are utilized to achieve a thermal splitting ratio within the modulation range of 0.15–0.58.Furthermore,temperature control results in a thermal splitting ratio ranging from 0.15 to 0.99,as a result of the suppression of the zero-field mode by the magnetic field and the blue shift effect of the zero-field mode frequency increasing with temperature.Notably,the gap distance between nanoparticles does not significantly affect the splitting ratio.These findings provide valuable theoretical guidance for utilizing magneto-optical nanoparticles as thermal splitters and lay the groundwork for implementing complex heat flux networks using In Sb for energy collection and heat transfer control. 展开更多
关键词 SPLITTING THERMAL system
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部