In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises e...In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises essential components such as base stations,edge servers,and numerous IIoT devices characterized by limited energy and computing capacities.The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption.The system operates in discrete time slots and employs a quasi-static approach,with a specific focus on the complexities of task partitioning and the management of constrained resources within the IIoT context.This study makes valuable contributions to the field by enhancing the understanding of resourceefficient management and task allocation,particularly relevant in real-time industrial applications.Experimental results indicate that our proposed algorithmsignificantly outperforms existing approaches,reducing queue backlog by 45.32% and 17.25% compared to SMRA and ACRA while achieving a 27.31% and 74.12% improvement in Qn O.Moreover,the algorithmeffectively balances complexity and network performance,as demonstratedwhen reducing the number of devices in each group(Ng)from 200 to 50,resulting in a 97.21% reduction in complexity with only a 7.35% increase in energy consumption.This research offers a practical solution for optimizing IIoT networks in real-time industrial settings.展开更多
Due to the limitations of a priori knowledge and convolution operation,the existing image restoration techniques cannot be directly applied to the cultural relics mural restoration,in order to more accurately restore ...Due to the limitations of a priori knowledge and convolution operation,the existing image restoration techniques cannot be directly applied to the cultural relics mural restoration,in order to more accurately restore the original appearance of the cultural relics mural images,an image restoration based on the denoising diffusion probability model(Denoising Diffusion Probability Model(DDPM))and the Transformer method.The process involves two steps:in the first step,the damaged mural image is firstly utilized as the condition to generate the noise image,using the time,condition and noise image patch as the inputs to the noise prediction network,capturing the global dependencies in the input sequence through the multi-attentionmechanismof the input sequence and feedforward neural network processing,and designing a long skip connection between the shallow and deep layers in the Transformer blocks between the shallow and deep layers using long skip connections to fuse the feature information of global and local outputs to maintain the overall consistency of the restoration results;In the second step,taking the noisy image as a condition to direct the diffusion model to back sample to generate the restored image.Experiment results show that the PSNR and SSIM of the proposedmethod are improved by 2%to 9%and 1%to 3.3%,respectively,which are compared to the comparison methods.This study proposed synthesizes the advantages of the diffusionmodel and deep learningmodel to make themural restoration results more accurate.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network...To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network’s edge.However,resource-constrained mobile devices still suffer from a capacity mismatch when faced with latency-sensitive and compute-intensive emerging applications.To address the difficulty of running computationally intensive applications on resource-constrained clients,a model of the computation offloading problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper.Then a user benefit function EoU(Experience of Users)is proposed jointly considering energy consumption and time delay.The EoU maximization problem is decomposed into two steps,i.e.,resource allocation and offloading decision.The offloading decision is usually given by heuristic algorithms which are often faced with the challenge of slow convergence and poor stability.Thus,a combined offloading algorithm,i.e.,a Gini coefficient-based adaptive genetic algorithm(GCAGA),is proposed to alleviate the dilemma.The proposed algorithm optimizes the offloading decision by maximizing EoU and accelerates the convergence with the Gini coefficient.The simulation compares the proposed algorithm with the genetic algorithm(GA)and adaptive genetic algorithm(AGA).Experiment results show that the Gini coefficient and the adaptive heuristic operators can accelerate the convergence speed,and the proposed algorithm performs better in terms of convergence while obtaining higher EoU.The simulation code of the proposed algorithm is available:https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA.展开更多
A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the line...A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.展开更多
This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contra...This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contrary to frequency estimation of a single attribute,the multidimensional aspect demands particular attention to the privacy budget.Besides,when collecting user statistics longitudinally,privacy progressively degrades.Indeed,the“multiple”settings in combination(i.e.,many attributes and several collections throughout time)impose several challenges,for which this paper proposes the first solution for frequency estimates under LDP.To tackle these issues,we extend the analysis of three state-of-the-art LDP protocols(Generalized Randomized Response–GRR,Optimized Unary Encoding–OUE,and Symmetric Unary Encoding–SUE)for both longitudinal and multidimensional data collections.While the known literature uses OUE and SUE for two rounds of sanitization(a.k.a.memoization),i.e.,L-OUE and L-SUE,respectively,we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility(i.e.,L-OSUE).Also,for attributes with small domain sizes,we propose Longitudinal GRR(L-GRR),which provides higher utility than the other protocols based on unary encoding.Last,we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates(ALLOMFREE),which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol,i.e.,either L-GRR or L-OSUE.As shown in the results,ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.展开更多
The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There ...The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.展开更多
Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality.This study addresses the pressing issue of brain tumor classification using Mag...Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality.This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging(MRI).It focuses on distinguishing between Low-Grade Gliomas(LGG)and High-Grade Gliomas(HGG).LGGs are benign and typically manageable with surgical resection,while HGGs are malignant and more aggressive.The research introduces an innovative custom convolutional neural network(CNN)model,Glioma-CNN.GliomaCNN stands out as a lightweight CNN model compared to its predecessors.The research utilized the BraTS 2020 dataset for its experiments.Integrated with the gradient-boosting algorithm,GliomaCNN has achieved an impressive accuracy of 99.1569%.The model’s interpretability is ensured through SHapley Additive exPlanations(SHAP)and Gradient-weighted Class Activation Mapping(Grad-CAM++).They provide insights into critical decision-making regions for classification outcomes.Despite challenges in identifying tumors in images without visible signs,the model demonstrates remarkable performance in this critical medical application,offering a promising tool for accurate brain tumor diagnosis which paves the way for enhanced early detection and treatment of brain tumors.展开更多
The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human re...The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional requirements.To address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human effort.However,existing techniques often struggle with complex instructions and large-scale projects.In our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer trees.Experimental results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT dataset.Both datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse scenarios.These findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes.展开更多
Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when deal...Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field.展开更多
The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research cha...The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research challenges,such as ensuring security,compatibility,standardization,performance,privacy,and increasing user awareness.DoH significantly impacts network security,including better end-user privacy and security,challenges for network security professionals,increasing usage of encrypted malware communication,and difficulty adapting DNS-based security measures.Therefore,it is important to understand the impact of DoH on network security and develop newprivacy-preserving techniques to allowthe analysis of DoH traffic without compromising user privacy.This paper provides an in-depth analysis of the effects of DoH on cybersecurity.We discuss various techniques for detecting DoH tunneling and identify essential research challenges that need to be addressed in future security studies.Overall,this paper highlights the need for continued research and development to ensure the effectiveness of DoH as a tool for improving privacy and security.展开更多
Aim:This study aims to establish an artificial intelligence model,ThyroidNet,to diagnose thyroid nodules using deep learning techniques accurately.Methods:A novel method,ThyroidNet,is introduced and evaluated based on...Aim:This study aims to establish an artificial intelligence model,ThyroidNet,to diagnose thyroid nodules using deep learning techniques accurately.Methods:A novel method,ThyroidNet,is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules.First,we propose the multitask TransUnet,which combines the TransUnet encoder and decoder with multitask learning.Second,we propose the DualLoss function,tailored to the thyroid nodule localization and classification tasks.It balances the learning of the localization and classification tasks to help improve the model’s generalization ability.Third,we introduce strategies for augmenting the data.Finally,we submit a novel deep learning model,ThyroidNet,to accurately detect thyroid nodules.Results:ThyroidNet was evaluated on private datasets and was comparable to other existing methods,including U-Net and TransUnet.Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules.It achieved improved accuracy of 3.9%and 1.5%,respectively.Conclusion:ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks.Future research directions include optimization of the model structure,expansion of the dataset size,reduction of computational complexity and memory requirements,and exploration of additional applications of ThyroidNet in medical image analysis.展开更多
Objectives: This study aimed to understand the experience and impact of a physical activity and sleep wrist-worn tracker (Fitbit)-based healthy lifestyle intervention for older patients attending a memory assessment s...Objectives: This study aimed to understand the experience and impact of a physical activity and sleep wrist-worn tracker (Fitbit)-based healthy lifestyle intervention for older patients attending a memory assessment service, who are experiencing cognitive impairment but do not receive a dementia diagnosis. Methods: A qualitative design was employed. Semi-structured interviews were conducted with a purposeful sample of thirteen participants recruited from a memory assessment service. Thematic analysis, that was data driven and inductive, was undertaken to analyse the data. Results: Two global themes were developed. “Understanding exercise and sleep as part of my lifestyle” was made up of themes representing how participants viewed exercise and sleep as part of their lifestyles in terms of acknowledging the positive impacts and the barriers to exercise and sleep. The second global theme “Understanding my experience of the healthy lifestyle intervention” was made up of themes that identified the positive impact of the intervention regarding improving health and wellbeing, enabling validation of proactive behaviours and motivation to engage in healthy lifestyle behaviours, so promoting positive behaviour change. Conclusion: Patients experiencing age-related cognitive impairment, applied and benefited from a healthy lifestyle Fitbit-based intervention to facilitate and promote physical activity, better sleep hygiene and healthy lifestyles.展开更多
The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas a...The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas and stars of our own Milkyway Galaxy. This research builds on work from a previous paper that sought to impute this missing galactic information using Inpainting, polar transforms and Linear Regression ANNs. In that paper, the author only attempted to impute the data in the Northern hemisphere using the ANN model, which subsequently confirmed the existence of the Great Attractor and the homogeneity of the Universe. In this paper, the author has imputed the Southern Hemisphere and discovered a region that is mostly devoid of stars. Since this area appears to be the counterpart to the Great Attractor, the author refers to it as the Great Repeller and postulates that it is an area of physical repulsion, inline with the work of GerdPommerenke and others. Finally, the paper investigates large scale structures in the imputed galaxies.展开更多
Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party app...Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party apps, it has become an increasingly important issue for end-users and service providers to ensure that both the devices and the underlying network are secure. People will become more reliant on applications such as SMS, MMS, Internet Access, Online Transactions, and so on due to such features and capabilities. Thousands of devices ranging from low-cost phones to high-end luxury phones are powered by the Android operating system, which has dominated the smartphone marketplace. It is about making it possible for people from all socioeconomic backgrounds to get and use mobile devices in their daily activities. In response to this growing popularity, the number of new applications introduced to the Android market has skyrocketed. The recent appearance of a wide range of mobile malware has caught the attention of security professionals and scholars alike. In light of the ongoing expansion of the mobile phone industry, the likelihood of it being used in criminal activities will only continue to rise in the future. This article reviews the literature on malware detection and prevention in Android mobile devices, analyzes the existing literature on major studies and tasks, and covers articles, journals, and digital resources such as Internet security publications, scientific studies, and conferences.展开更多
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o...Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.展开更多
One of the major causes of road accidents is sleepy drivers.Such accidents typically result in fatalities and financial losses and disadvantage other road users.Numerous studies have been conducted to identify the dri...One of the major causes of road accidents is sleepy drivers.Such accidents typically result in fatalities and financial losses and disadvantage other road users.Numerous studies have been conducted to identify the driver’s sleepiness and integrate it into a warning system.Most studies have examined how the mouth and eyelids move.However,this limits the system’s ability to identify drowsiness traits.Therefore,this study designed an Accident Detection Framework(RPK)that could be used to reduce road accidents due to sleepiness and detect the location of accidents.The drowsiness detectionmodel used three facial parameters:Yawning,closed eyes(blinking),and an upright head position.This model used a Convolutional Neural Network(CNN)consisting of two phases.The initial phase involves video processing and facial landmark coordinate detection.The second phase involves developing the extraction of frame-based features using normalization methods.All these phases used OpenCV and TensorFlow.The dataset contained 5017 images with 874 open eyes images,850 closed eyes images,723 open-mouth images,725 closed-mouth images,761 sleepy-head images,and 1084 non-sleepy head images.The dataset of 5017 images was divided into the training set with 4505 images and the testing set with 512 images,with a ratio of 90:10.The results showed that the RPK design could detect sleepiness by using deep learning techniques with high accuracy on all three parameters;namely 98%for eye blinking,96%for mouth yawning,and 97%for head movement.Overall,the test results have provided an overview of how the developed RPK prototype can accurately identify drowsy drivers.These findings will have a significant impact on the improvement of road users’safety and mobility.展开更多
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th...Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction.展开更多
Background:In recent years,there has been increased research interest in both smartphone addiction and social media addiction as well as the development of psychometric instruments to assess these constructs.However,t...Background:In recent years,there has been increased research interest in both smartphone addiction and social media addiction as well as the development of psychometric instruments to assess these constructs.However,there is a lack of psychometric evaluation for instruments assessing smartphone addiction and social media addiction in Thailand.The present study evaluated the psychometric properties and gender measurement invariance of the Thai version of the Smartphone Application-Based Addiction Scale(SABAS)and Bergen Social Media Addiction Scale(BSMAS).Method:A total of 801 Thai university students participated in an online survey from January 2022 to July 2022 which included demographic information,SABAS,BSMAS,and the Internet Gaming Disorder Scale-Short Form(IGDS9-SF).Results:Confirmatory Factor Analyses(CFAs)found that both the SABAS and BSMAS had a one-factor structure.Findings demonstrated adequate psychometric properties of both instruments and also supported measurement invariance across genders.Moreover,scores on the SABAS and BSMAS were correlated with scores on the IGDS9-SF.Conclusion:The results indicated that the SABAS and BSMAS are useful psychometric instruments for assessing the risk of smartphone addiction and social media addiction among Thai young adults.展开更多
Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from li...Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.展开更多
基金the Deanship of Scientific Research at King Khalid University for funding this work through large group research project under Grant Number RGP2/474/44.
文摘In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises essential components such as base stations,edge servers,and numerous IIoT devices characterized by limited energy and computing capacities.The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption.The system operates in discrete time slots and employs a quasi-static approach,with a specific focus on the complexities of task partitioning and the management of constrained resources within the IIoT context.This study makes valuable contributions to the field by enhancing the understanding of resourceefficient management and task allocation,particularly relevant in real-time industrial applications.Experimental results indicate that our proposed algorithmsignificantly outperforms existing approaches,reducing queue backlog by 45.32% and 17.25% compared to SMRA and ACRA while achieving a 27.31% and 74.12% improvement in Qn O.Moreover,the algorithmeffectively balances complexity and network performance,as demonstratedwhen reducing the number of devices in each group(Ng)from 200 to 50,resulting in a 97.21% reduction in complexity with only a 7.35% increase in energy consumption.This research offers a practical solution for optimizing IIoT networks in real-time industrial settings.
基金financial support from Hunan Provincial Natural Science and Technology Fund Project(Grant No.2022JJ50077)Natural Science Foundation of Hunan Province(Grant No.2024JJ8055).
文摘Due to the limitations of a priori knowledge and convolution operation,the existing image restoration techniques cannot be directly applied to the cultural relics mural restoration,in order to more accurately restore the original appearance of the cultural relics mural images,an image restoration based on the denoising diffusion probability model(Denoising Diffusion Probability Model(DDPM))and the Transformer method.The process involves two steps:in the first step,the damaged mural image is firstly utilized as the condition to generate the noise image,using the time,condition and noise image patch as the inputs to the noise prediction network,capturing the global dependencies in the input sequence through the multi-attentionmechanismof the input sequence and feedforward neural network processing,and designing a long skip connection between the shallow and deep layers in the Transformer blocks between the shallow and deep layers using long skip connections to fuse the feature information of global and local outputs to maintain the overall consistency of the restoration results;In the second step,taking the noisy image as a condition to direct the diffusion model to back sample to generate the restored image.Experiment results show that the PSNR and SSIM of the proposedmethod are improved by 2%to 9%and 1%to 3.3%,respectively,which are compared to the comparison methods.This study proposed synthesizes the advantages of the diffusionmodel and deep learningmodel to make themural restoration results more accurate.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.
文摘To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network’s edge.However,resource-constrained mobile devices still suffer from a capacity mismatch when faced with latency-sensitive and compute-intensive emerging applications.To address the difficulty of running computationally intensive applications on resource-constrained clients,a model of the computation offloading problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper.Then a user benefit function EoU(Experience of Users)is proposed jointly considering energy consumption and time delay.The EoU maximization problem is decomposed into two steps,i.e.,resource allocation and offloading decision.The offloading decision is usually given by heuristic algorithms which are often faced with the challenge of slow convergence and poor stability.Thus,a combined offloading algorithm,i.e.,a Gini coefficient-based adaptive genetic algorithm(GCAGA),is proposed to alleviate the dilemma.The proposed algorithm optimizes the offloading decision by maximizing EoU and accelerates the convergence with the Gini coefficient.The simulation compares the proposed algorithm with the genetic algorithm(GA)and adaptive genetic algorithm(AGA).Experiment results show that the Gini coefficient and the adaptive heuristic operators can accelerate the convergence speed,and the proposed algorithm performs better in terms of convergence while obtaining higher EoU.The simulation code of the proposed algorithm is available:https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20242,52271260,52001054)Natural Science Foundation of Liaoning Province(Grant No.2021-BS-060)Fundamental Research Funds for the Central Universities(Grant No.DUT23RC(3)017)。
文摘A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.
基金supported by the Agence Nationale de la Recherche(ANR)(contract“ANR-17-EURE-0002”)by the Region of Bourgogne Franche-ComtéCADRAN Projectsupported by the European Research Council(ERC)project HYPATIA under the European Union's Horizon 2020 research and innovation programme.Grant agreement n.835294。
文摘This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contrary to frequency estimation of a single attribute,the multidimensional aspect demands particular attention to the privacy budget.Besides,when collecting user statistics longitudinally,privacy progressively degrades.Indeed,the“multiple”settings in combination(i.e.,many attributes and several collections throughout time)impose several challenges,for which this paper proposes the first solution for frequency estimates under LDP.To tackle these issues,we extend the analysis of three state-of-the-art LDP protocols(Generalized Randomized Response–GRR,Optimized Unary Encoding–OUE,and Symmetric Unary Encoding–SUE)for both longitudinal and multidimensional data collections.While the known literature uses OUE and SUE for two rounds of sanitization(a.k.a.memoization),i.e.,L-OUE and L-SUE,respectively,we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility(i.e.,L-OSUE).Also,for attributes with small domain sizes,we propose Longitudinal GRR(L-GRR),which provides higher utility than the other protocols based on unary encoding.Last,we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates(ALLOMFREE),which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol,i.e.,either L-GRR or L-OSUE.As shown in the results,ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.
基金supported by project TRANSACT funded under H2020-EU.2.1.1.-INDUSTRIAL LEADERSHIP-Leadership in Enabling and Industrial Technologies-Information and Communication Technologies(Grant Agreement ID:101007260).
文摘The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.
基金This research is funded by the Researchers Supporting Project Number(RSPD2024R1027),King Saud University,Riyadh,Saudi Arabia.
文摘Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality.This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging(MRI).It focuses on distinguishing between Low-Grade Gliomas(LGG)and High-Grade Gliomas(HGG).LGGs are benign and typically manageable with surgical resection,while HGGs are malignant and more aggressive.The research introduces an innovative custom convolutional neural network(CNN)model,Glioma-CNN.GliomaCNN stands out as a lightweight CNN model compared to its predecessors.The research utilized the BraTS 2020 dataset for its experiments.Integrated with the gradient-boosting algorithm,GliomaCNN has achieved an impressive accuracy of 99.1569%.The model’s interpretability is ensured through SHapley Additive exPlanations(SHAP)and Gradient-weighted Class Activation Mapping(Grad-CAM++).They provide insights into critical decision-making regions for classification outcomes.Despite challenges in identifying tumors in images without visible signs,the model demonstrates remarkable performance in this critical medical application,offering a promising tool for accurate brain tumor diagnosis which paves the way for enhanced early detection and treatment of brain tumors.
基金This work is supported by EIAS(Emerging Intelligent Autonomous Systems)Data Science Lab,Prince Sultan University,Kingdom of Saudi Arabia,by paying the APC.
文摘The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional requirements.To address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human effort.However,existing techniques often struggle with complex instructions and large-scale projects.In our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer trees.Experimental results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT dataset.Both datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse scenarios.These findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes.
文摘Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field.
基金Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under Grant Number RGP.2/373/45.
文摘The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research challenges,such as ensuring security,compatibility,standardization,performance,privacy,and increasing user awareness.DoH significantly impacts network security,including better end-user privacy and security,challenges for network security professionals,increasing usage of encrypted malware communication,and difficulty adapting DNS-based security measures.Therefore,it is important to understand the impact of DoH on network security and develop newprivacy-preserving techniques to allowthe analysis of DoH traffic without compromising user privacy.This paper provides an in-depth analysis of the effects of DoH on cybersecurity.We discuss various techniques for detecting DoH tunneling and identify essential research challenges that need to be addressed in future security studies.Overall,this paper highlights the need for continued research and development to ensure the effectiveness of DoH as a tool for improving privacy and security.
基金supported by MRC,UK (MC_PC_17171)Royal Society,UK (RP202G0230)+8 种基金BHF,UK (AA/18/3/34220)Hope Foundation for Cancer Research,UK (RM60G0680)GCRF,UK (P202PF11)Sino-UK Industrial Fund,UK (RP202G0289)LIAS,UK (P202ED10,P202RE969)Data Science Enhancement Fund,UK (P202RE237)Fight for Sight,UK (24NN201)Sino-UK Education Fund,UK (OP202006)BBSRC,UK (RM32G0178B8).
文摘Aim:This study aims to establish an artificial intelligence model,ThyroidNet,to diagnose thyroid nodules using deep learning techniques accurately.Methods:A novel method,ThyroidNet,is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules.First,we propose the multitask TransUnet,which combines the TransUnet encoder and decoder with multitask learning.Second,we propose the DualLoss function,tailored to the thyroid nodule localization and classification tasks.It balances the learning of the localization and classification tasks to help improve the model’s generalization ability.Third,we introduce strategies for augmenting the data.Finally,we submit a novel deep learning model,ThyroidNet,to accurately detect thyroid nodules.Results:ThyroidNet was evaluated on private datasets and was comparable to other existing methods,including U-Net and TransUnet.Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules.It achieved improved accuracy of 3.9%and 1.5%,respectively.Conclusion:ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks.Future research directions include optimization of the model structure,expansion of the dataset size,reduction of computational complexity and memory requirements,and exploration of additional applications of ThyroidNet in medical image analysis.
文摘Objectives: This study aimed to understand the experience and impact of a physical activity and sleep wrist-worn tracker (Fitbit)-based healthy lifestyle intervention for older patients attending a memory assessment service, who are experiencing cognitive impairment but do not receive a dementia diagnosis. Methods: A qualitative design was employed. Semi-structured interviews were conducted with a purposeful sample of thirteen participants recruited from a memory assessment service. Thematic analysis, that was data driven and inductive, was undertaken to analyse the data. Results: Two global themes were developed. “Understanding exercise and sleep as part of my lifestyle” was made up of themes representing how participants viewed exercise and sleep as part of their lifestyles in terms of acknowledging the positive impacts and the barriers to exercise and sleep. The second global theme “Understanding my experience of the healthy lifestyle intervention” was made up of themes that identified the positive impact of the intervention regarding improving health and wellbeing, enabling validation of proactive behaviours and motivation to engage in healthy lifestyle behaviours, so promoting positive behaviour change. Conclusion: Patients experiencing age-related cognitive impairment, applied and benefited from a healthy lifestyle Fitbit-based intervention to facilitate and promote physical activity, better sleep hygiene and healthy lifestyles.
文摘The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas and stars of our own Milkyway Galaxy. This research builds on work from a previous paper that sought to impute this missing galactic information using Inpainting, polar transforms and Linear Regression ANNs. In that paper, the author only attempted to impute the data in the Northern hemisphere using the ANN model, which subsequently confirmed the existence of the Great Attractor and the homogeneity of the Universe. In this paper, the author has imputed the Southern Hemisphere and discovered a region that is mostly devoid of stars. Since this area appears to be the counterpart to the Great Attractor, the author refers to it as the Great Repeller and postulates that it is an area of physical repulsion, inline with the work of GerdPommerenke and others. Finally, the paper investigates large scale structures in the imputed galaxies.
文摘Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party apps, it has become an increasingly important issue for end-users and service providers to ensure that both the devices and the underlying network are secure. People will become more reliant on applications such as SMS, MMS, Internet Access, Online Transactions, and so on due to such features and capabilities. Thousands of devices ranging from low-cost phones to high-end luxury phones are powered by the Android operating system, which has dominated the smartphone marketplace. It is about making it possible for people from all socioeconomic backgrounds to get and use mobile devices in their daily activities. In response to this growing popularity, the number of new applications introduced to the Android market has skyrocketed. The recent appearance of a wide range of mobile malware has caught the attention of security professionals and scholars alike. In light of the ongoing expansion of the mobile phone industry, the likelihood of it being used in criminal activities will only continue to rise in the future. This article reviews the literature on malware detection and prevention in Android mobile devices, analyzes the existing literature on major studies and tasks, and covers articles, journals, and digital resources such as Internet security publications, scientific studies, and conferences.
文摘Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.
基金The Faculty of Information Science and Technology,Universiti Kebangsaan Malaysia,provided funding for this research through the Research Grant“An Intelligent 4IR Mobile Technology for Express Bus Safety System Scheme DCP-2017-020/2”.
文摘One of the major causes of road accidents is sleepy drivers.Such accidents typically result in fatalities and financial losses and disadvantage other road users.Numerous studies have been conducted to identify the driver’s sleepiness and integrate it into a warning system.Most studies have examined how the mouth and eyelids move.However,this limits the system’s ability to identify drowsiness traits.Therefore,this study designed an Accident Detection Framework(RPK)that could be used to reduce road accidents due to sleepiness and detect the location of accidents.The drowsiness detectionmodel used three facial parameters:Yawning,closed eyes(blinking),and an upright head position.This model used a Convolutional Neural Network(CNN)consisting of two phases.The initial phase involves video processing and facial landmark coordinate detection.The second phase involves developing the extraction of frame-based features using normalization methods.All these phases used OpenCV and TensorFlow.The dataset contained 5017 images with 874 open eyes images,850 closed eyes images,723 open-mouth images,725 closed-mouth images,761 sleepy-head images,and 1084 non-sleepy head images.The dataset of 5017 images was divided into the training set with 4505 images and the testing set with 512 images,with a ratio of 90:10.The results showed that the RPK design could detect sleepiness by using deep learning techniques with high accuracy on all three parameters;namely 98%for eye blinking,96%for mouth yawning,and 97%for head movement.Overall,the test results have provided an overview of how the developed RPK prototype can accurately identify drowsy drivers.These findings will have a significant impact on the improvement of road users’safety and mobility.
文摘Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction.
基金This research was funded by the Ministry of Science and Technology,Taiwan(MOST 110-2410-H-006-115)the Higher Education Sprout Project,Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University(NCKU)the 2021 Southeast and South Asia and Taiwan Universities Joint Research Scheme(NCKU 31),and the E-Da Hospital(EDAHC111004).
文摘Background:In recent years,there has been increased research interest in both smartphone addiction and social media addiction as well as the development of psychometric instruments to assess these constructs.However,there is a lack of psychometric evaluation for instruments assessing smartphone addiction and social media addiction in Thailand.The present study evaluated the psychometric properties and gender measurement invariance of the Thai version of the Smartphone Application-Based Addiction Scale(SABAS)and Bergen Social Media Addiction Scale(BSMAS).Method:A total of 801 Thai university students participated in an online survey from January 2022 to July 2022 which included demographic information,SABAS,BSMAS,and the Internet Gaming Disorder Scale-Short Form(IGDS9-SF).Results:Confirmatory Factor Analyses(CFAs)found that both the SABAS and BSMAS had a one-factor structure.Findings demonstrated adequate psychometric properties of both instruments and also supported measurement invariance across genders.Moreover,scores on the SABAS and BSMAS were correlated with scores on the IGDS9-SF.Conclusion:The results indicated that the SABAS and BSMAS are useful psychometric instruments for assessing the risk of smartphone addiction and social media addiction among Thai young adults.
文摘Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.