期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-scale Attention Dilated Residual Image Denoising Network Based on Skip Connection
1
作者 Zhiting Du Xianchun Zhou +2 位作者 Mengnan Lv Yuze Chen Binxin Tang 《Instrumentation》 2024年第3期41-53,共13页
In the field of image denoising, deep learning technology holds a dominance. However, the current network model tends to lose fine-grained information with the depth of the network. To address this issue, this paper p... In the field of image denoising, deep learning technology holds a dominance. However, the current network model tends to lose fine-grained information with the depth of the network. To address this issue, this paper proposes a Multi-scale Attention Dilated Residual Image Denoising Network(MADRNet) based on skip connection, which consists of Dense Interval Transmission Block(DTB), Sparse Residual Block(SRB), Dilated Residual Attention Reconstruction Block(DRAB) and Noise Extraction Block(NEB). The DTB enhances the classical dense layer by reducing information redundancy and extracting more accurate feature information. Meanwhile, SRB improves feature information exchange and model generalization through the use of sparse mechanism and skip connection strategy with different expansion factors. The NEB is primarily responsible for extracting and estimating noise. Its output, together with that of the sparse residual module, acts on the DRAB to effectively prevent loss of shallow feature information and improve denoising effect. Furthermore, the DRAB integrates an dilated residual block into an attention mechanism to extract hidden noise information while using residual learning technology to reconstruct clear images. We respectively examined the performance of MADRNet in gray image denoising, color image denoising and real image denoising. The experiment results demonstrate that proposed network outperforms some excellent image denoising network in terms of peak signal-to-noise ratio, structural similarity index measurement and denoising time. The proposed network effectively addresses issues associated with the loss of detail information. 展开更多
关键词 image denoising deep learning dilated residual block sparse residual block
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部