In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e...In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.展开更多
Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the...Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.展开更多
Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combi...Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combining the Woods–Saxon(WS) model and the improved piecewise bistable model. The model retains the characteristics of the independent parameters of WS model and the improved piecewise model has no output saturation, all the parameters in the new model have no coupling characteristics. Under α stable noise environment, the new model is used to detect periodic signal and aperiodic signal, the detection results indicate that the new model has higher noise utilization and better detection effect.Finally, the new model is applied to image denoising, the results showed that under the same conditions, the output peak signal-to-noise ratio(PSNR) and the correlation number of NCSR method is higher than that of other commonly used linear denoising methods and improved piecewise SR methods, the effectiveness of the new model is verified.展开更多
Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.Th...Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.The efficacy of SERS microfluidic systems is greatly dependent on the sensitivity and reusability of SERS detection substrates to ensure repeated use for prolonged periods.This study proposed a novel process of femtosecond laser nanoparticle array(NPA)implantation to achieve homogeneous forward transfer of gold NPA on a flexible polymer film and accurately integrated it within microfluidic chips for SERS detection.The implanted Au-NPA strips show a remarkable electromagnetic field enhancement with the factor of 9×108 during SERS detection of malachite green(MG)solution,achieving a detection limit lower than 10 ppt,far better than most laser-prepared SERS substrates.Furthermore,Au-NPA strips show excellent reusability after several physical and chemical cleaning,because of the robust embedment of laser-implanted NPA in flexible substrates.To demonstrate the performance of Au-NPA,a SERS microfluidic system is built to monitor the online oxidation reaction between MG/NaClO reactants,which helps infer the reaction path.The proposed method of nanoparticle implantation is more effective than the direct laser structuring technique.It provides better performance for SERS detection,robustness of detection,and substrate flexibility and has a wider range of applications for microfluidic systems without any negative impact.展开更多
The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.I...The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.展开更多
The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculat...The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculations of differential v_(2)based on the advanced flow extraction method of light flavor hadrons(pions,kaons,protons,andΛ)in small collision systems were extended to a wider transverse momentum(p_(T))range of up to 8 GeV/c for the first time.The string-melting version of the AMPT model provides a good description of the measured p_(T)-differential v_(2)of the mesons but exhibits a slight deviation from the baryon v_(2).In addition,we observed the features of mass ordering at low p_(T)and the approximate number-of-constituentquark(NCQ)scaling at intermediate p_(T).Moreover,we demonstrate that hadronic rescattering does not have a significant impact on v_(2)in p-Pb collisions for different centrality selections,whereas partonic scattering dominates in generating the elliptic anisotropy of the final particles.This study provides further insight into the origin of collective-like behavior in small collision systems and has referential value for future measurements of azimuthal anisotropy.展开更多
In this paper,the Internet ofMedical Things(IoMT)is identified as a promising solution,which integrates with the cloud computing environment to provide remote health monitoring solutions and improve the quality of ser...In this paper,the Internet ofMedical Things(IoMT)is identified as a promising solution,which integrates with the cloud computing environment to provide remote health monitoring solutions and improve the quality of service(QoS)in the healthcare sector.However,problems with the present architectural models such as those related to energy consumption,service latency,execution cost,and resource usage,remain a major concern for adopting IoMT applications.To address these problems,this work presents a four-tier IoMT-edge-fog-cloud architecture along with an optimization model formulated using Mixed Integer Linear Programming(MILP),with the objective of efficiently processing and placing IoMT applications in the edge-fog-cloud computing environment,while maintaining certain quality standards(e.g.,energy consumption,service latency,network utilization).A modeling environment is used to assess and validate the proposed model by considering different traffic loads and processing requirements.In comparison to the other existing models,the performance analysis of the proposed approach shows a maximum saving of 38%in energy consumption and a 73%reduction in service latency.The results also highlight that offloading the IoMT application to the edge and fog nodes compared to the cloud is highly dependent on the tradeoff between the network journey time saved vs.the extra power consumed by edge or fog resources.展开更多
Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely...Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
Flexible pressure sensors are lightweight and highly sensitive,making them suitable for use in small portable devices to achieve precise measurements of tiny forces.This article introduces a low-cost and easy-fabricat...Flexible pressure sensors are lightweight and highly sensitive,making them suitable for use in small portable devices to achieve precise measurements of tiny forces.This article introduces a low-cost and easy-fabrication strategy for piezoresistive flexible pressure sensors.By embedding silver nanowires into a polydimethylsiloxane layer with micro-pyramids on its surface,a flexible pressure sensor is created that can detect low pressure (17.3 Pa) with fast response (<20 ms) and high sensitivity (69.6 mA kPa-1).Furthermore,the pressure sensor exhibits a sensitive and stable response to a small amount of water flowing on its surface.On this basis,the flexible pressure sensor is innovatively combined with a micro-rotor to fabricate a novel urinary flow-rate meter (uroflowmeter),and results from a simulated human urination experiment show that the uroflowmeter accurately captured all the essential shape characteristics that were present in the pump-simulated urination curves.Looking ahead,this research provides a new reference for using flexible pressure sensors in urinary flow-rate monitoring.展开更多
Leveraging big data analytics and advanced algorithms to accelerate and optimize the process of molecular and materials design, synthesis, and application has revolutionized the field of molecular and materials scienc...Leveraging big data analytics and advanced algorithms to accelerate and optimize the process of molecular and materials design, synthesis, and application has revolutionized the field of molecular and materials science, allowing researchers to gain a deeper understanding of material properties and behaviors,leading to the development of new materials that are more efficient and reliable. However, the difficulty in constructing large-scale datasets of new molecules/materials due to the high cost of data acquisition and annotation limits the development of conventional machine learning(ML) approaches. Knowledgereused transfer learning(TL) methods are expected to break this dilemma. The application of TL lowers the data requirements for model training, which makes TL stand out in researches addressing data quality issues. In this review, we summarize recent progress in TL related to molecular and materials. We focus on the application of TL methods for the discovery of advanced molecules/materials, particularly, the construction of TL frameworks for different systems, and how TL can enhance the performance of models. In addition, the challenges of TL are also discussed.展开更多
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop...Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.展开更多
Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fr...Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fraction of agents.展开更多
Short-chain fatty acids(SCFAs)are major metabolites produced by the gut microbiota through the fermentation of dietary fiber,and they have garnered significant attention due to their close association with host health...Short-chain fatty acids(SCFAs)are major metabolites produced by the gut microbiota through the fermentation of dietary fiber,and they have garnered significant attention due to their close association with host health.As important mediators between the gut microbiota and the host,SCFAs serve as energy substrates for intestinal epithelial cells and maintain homeostasis in host immune and energy metabolism by influencing host epigenetics,activating G protein-coupled receptors,and inhibiting pathogenic microbial infections.This review provides a comprehensive summary of SCFAs synthesis and metabolism and offering an overview of the latest research progress on their roles in protecting gut health,enhancing energy metabolism,mitigating diseases such as cancer,obesity,and diabetes,modulating the gut-brain axis and gut-l ung axis,and promoting bone health.展开更多
To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shi...To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shimming procedure is quite complex.Therefore,an effective and reliable method in application is developed in this paper.Firstly,the best regulation of spring load is solved based on a mechanical model of the secondary suspension system,providing a target for actual adjustment.To reveal the relationship between secondary spring load distribution and shim quantity sequence,a forecasting model is constructed and then modified experimentally with consideration of car body’s elastic deformation.Further,a gradient-based algorithm with a momentum operation is proposed for the load optimization.Effectiveness of the whole method has been verified on a test rig.It is experimentally confirmed that this research provides an important basis for achieving an optimal regulation of spring load distribution for multiple types of railway vehicles.展开更多
Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying th...Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.展开更多
Circulating tumor cells(CTCs) are the cancer cells that circulate in the peripheral blood after escaping from the original or metastatic tumors. CTCs could be used as non-invasive source of clinical information in ear...Circulating tumor cells(CTCs) are the cancer cells that circulate in the peripheral blood after escaping from the original or metastatic tumors. CTCs could be used as non-invasive source of clinical information in early diagnosis of cancer and evaluation of cancer development. In recent years, CTC research has become a hotspot field wherein many novel CTC detection technologies based on microfluidics have been developed. Great advances have been made that exhibit obvious technical advantages, but cannot yet satisfy the current clinical requirements. In this study, we review the main advances in isolation and detection methods of CTC based on microfluidics research over several years, propose five technical indicators for evaluating these methods, and explore the application prospects. We also discuss the concepts, issues, approaches, advantages, limitations, and challenges with an aim of stimulating a broader interest in developing microfluidics-based CTC detection technology.展开更多
User-interactive electronic skin(e-skin) that could convert mechanical stimuli into distinguishable outputs displays tremendous potential for wearable devices and health care applications. However, the existing device...User-interactive electronic skin(e-skin) that could convert mechanical stimuli into distinguishable outputs displays tremendous potential for wearable devices and health care applications. However, the existing devices have the disadvantages such as complex integration procedure and lack of the intuitive signal display function. Here, we present a bioinspired user-interactive e-skin, which is simple in structure and can synchronously achieve digital electrical response and optical visualization upon external mechanical stimulus. The e-skin comprises a conductive layer with a carbon nanotubes/cellulose nanofibers/MXene nanohybrid network featuring remarkable electromechanical behaviors, and a stretchable elastomer layer, which is composed of silicone rubber and thermochromic pigments. Furthermore, the conductive nanohybrid network with outstanding Joule heating performance can generate controllable thermal energy under voltage input and then achieve the dynamic coloration of silicone-based elastomer. Especially, such an innovative fusion strategy of digital data and visual images enables the e-skin to monitor human activities with evermore intuition and accuracy. The simple design philosophy and reliable operation of the demonstrated e-skin are expected to provide an ideal platform for next-generation flexible electronics.展开更多
Objective:To construct a novel nanoplatform GNS@CaCO3/Ce6-NK by loading the CaCO3-coated gold nanostars(GNSs)with Chlorin e6 molecules(Ce6)into human peripheral blood mononuclear cells(PBMCs)-derived NK cells for tumo...Objective:To construct a novel nanoplatform GNS@CaCO3/Ce6-NK by loading the CaCO3-coated gold nanostars(GNSs)with Chlorin e6 molecules(Ce6)into human peripheral blood mononuclear cells(PBMCs)-derived NK cells for tumor targeted therapy.Methods:GNS@CaCO3/Ce6 nanoparticles were prepared and characterized by TEM and UV-vis.The cell surface markers and cytokines secretion of NK cells before and after loading the GNS@CaCO3/Ce6 nanoparticles were detected by Flow Cytometry(FCM)and ELISA.Effects of the GNS@CaCO3/Ce6-NK cells on A549 cancer cells was determined by FCM and CCK-8.Intracellular fluorescent signals of GNS@CaCO3/Ce6-NK cells were detected via Confocal laser scanning microscopic(CLSM)and FCM at different time points.Intracellular ROS generation of GNS@CaCO3/Ce6-NK cells under laser irradiation were examined by FCM.The distribution of GNS@CaCO3/Ce6-NK in A549 tumor-bearing mice were observed by fluorescence imaging and PA imaging.The combination therapy of GNS@CaCO3/Ce6-NK under laser irradiation were investigated on tumor-bearing mice.Results:The coated CaC03 shell on the surface of GNSs exhibited prominent delivery and protection effect of Ce6 during the cellular uptake process.The as-prepared multifunctional GNS@CaCO3/Ce6-NK cells possessed bimodal functions of fluorescence imaging and photoacoustic imaging.The as-prepared multifunctional GNS@CaCO3/Ce6-NK cells could actively target tumor tissues with the enhanced photothermal/photodynamic therapy and immunotherapy.Conclusions:The GNS@CaCO3/Ce6-NK shows effective tumor-targeting ability and prominent therapeutic efficacy toward lung cancer A549 tumor-bearing mice.Through fully utilizing the features of GNSs and NK cells,this new nanoplatform provides a new synergistic strategy for enhanced photothermal/photodynamic therapy and immunotherapy in the field of anticancer development in the near future.展开更多
This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the compos...This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the composites are discussed briefly. The possible ongoing researches in area are speculated upon.展开更多
基金Science and Technology Innovation 2030-Major Project of“New Generation Artificial Intelligence”granted by Ministry of Science and Technology,Grant Number 2020AAA0109300.
文摘In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)the National Key Research and Development Program of China(No.2022YFA1602404)+1 种基金the National Natural Science Foundation(No.U1832129)the Youth Innovation Promotion Association CAS(No.2017309).
文摘Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.
基金Project supported by the National Natural Science Foundation of China (Grant No.62371388)the Key Research and Development Projects in Shaanxi Province,China (Grant No.2023-YBGY-044)。
文摘Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combining the Woods–Saxon(WS) model and the improved piecewise bistable model. The model retains the characteristics of the independent parameters of WS model and the improved piecewise model has no output saturation, all the parameters in the new model have no coupling characteristics. Under α stable noise environment, the new model is used to detect periodic signal and aperiodic signal, the detection results indicate that the new model has higher noise utilization and better detection effect.Finally, the new model is applied to image denoising, the results showed that under the same conditions, the output peak signal-to-noise ratio(PSNR) and the correlation number of NCSR method is higher than that of other commonly used linear denoising methods and improved piecewise SR methods, the effectiveness of the new model is verified.
基金The National Natural Science Foundation of China(Grant Numbers:U21A20135 and 52205488)‘Shuguang Program’supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Grant Number:20SG12)Shanghai Jiao Tong University(Grant Number:2020QY11).
文摘Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.The efficacy of SERS microfluidic systems is greatly dependent on the sensitivity and reusability of SERS detection substrates to ensure repeated use for prolonged periods.This study proposed a novel process of femtosecond laser nanoparticle array(NPA)implantation to achieve homogeneous forward transfer of gold NPA on a flexible polymer film and accurately integrated it within microfluidic chips for SERS detection.The implanted Au-NPA strips show a remarkable electromagnetic field enhancement with the factor of 9×108 during SERS detection of malachite green(MG)solution,achieving a detection limit lower than 10 ppt,far better than most laser-prepared SERS substrates.Furthermore,Au-NPA strips show excellent reusability after several physical and chemical cleaning,because of the robust embedment of laser-implanted NPA in flexible substrates.To demonstrate the performance of Au-NPA,a SERS microfluidic system is built to monitor the online oxidation reaction between MG/NaClO reactants,which helps infer the reaction path.The proposed method of nanoparticle implantation is more effective than the direct laser structuring technique.It provides better performance for SERS detection,robustness of detection,and substrate flexibility and has a wider range of applications for microfluidic systems without any negative impact.
基金funding support from National Natural Science Foundation of China(Project No.61574091)Wuxi River and Lake Management and Water Resources Management Center(Project No.JSXXCG2022-004).
文摘The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.
基金This work was supported by the Key Laboratory of Quark and Lepton Physics(MOE)in Central China Normal University(Nos.QLPL2022P01,QLPL202106)Natural Science Foundation of Hubei Provincial Education Department(No.Q20131603)+2 种基金National key research,development program of China(No.2018YFE0104700)National Natural Science Foundation of China(No.12175085)Fundamental research funds for the Central Universities(No.CCNU220N003).
文摘The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculations of differential v_(2)based on the advanced flow extraction method of light flavor hadrons(pions,kaons,protons,andΛ)in small collision systems were extended to a wider transverse momentum(p_(T))range of up to 8 GeV/c for the first time.The string-melting version of the AMPT model provides a good description of the measured p_(T)-differential v_(2)of the mesons but exhibits a slight deviation from the baryon v_(2).In addition,we observed the features of mass ordering at low p_(T)and the approximate number-of-constituentquark(NCQ)scaling at intermediate p_(T).Moreover,we demonstrate that hadronic rescattering does not have a significant impact on v_(2)in p-Pb collisions for different centrality selections,whereas partonic scattering dominates in generating the elliptic anisotropy of the final particles.This study provides further insight into the origin of collective-like behavior in small collision systems and has referential value for future measurements of azimuthal anisotropy.
基金The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work the project number(442/204).
文摘In this paper,the Internet ofMedical Things(IoMT)is identified as a promising solution,which integrates with the cloud computing environment to provide remote health monitoring solutions and improve the quality of service(QoS)in the healthcare sector.However,problems with the present architectural models such as those related to energy consumption,service latency,execution cost,and resource usage,remain a major concern for adopting IoMT applications.To address these problems,this work presents a four-tier IoMT-edge-fog-cloud architecture along with an optimization model formulated using Mixed Integer Linear Programming(MILP),with the objective of efficiently processing and placing IoMT applications in the edge-fog-cloud computing environment,while maintaining certain quality standards(e.g.,energy consumption,service latency,network utilization).A modeling environment is used to assess and validate the proposed model by considering different traffic loads and processing requirements.In comparison to the other existing models,the performance analysis of the proposed approach shows a maximum saving of 38%in energy consumption and a 73%reduction in service latency.The results also highlight that offloading the IoMT application to the edge and fog nodes compared to the cloud is highly dependent on the tradeoff between the network journey time saved vs.the extra power consumed by edge or fog resources.
基金the financial support from the National Key Research and Development Program of China(2022YFA1207503)the Giga Force Electronics Interdisciplinary Funding(JJHXM002208-2023)。
文摘Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金supported by the National Natural Science Foundation of China(Grant No.82270819)the Project of Integra-tive Chinese and Western Medicine(Grant No.ZXXT-202206)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFC3606001)the Basic Science Research Project of Renji Hospital(Grant No.RJTI22-MS-015).
文摘Flexible pressure sensors are lightweight and highly sensitive,making them suitable for use in small portable devices to achieve precise measurements of tiny forces.This article introduces a low-cost and easy-fabrication strategy for piezoresistive flexible pressure sensors.By embedding silver nanowires into a polydimethylsiloxane layer with micro-pyramids on its surface,a flexible pressure sensor is created that can detect low pressure (17.3 Pa) with fast response (<20 ms) and high sensitivity (69.6 mA kPa-1).Furthermore,the pressure sensor exhibits a sensitive and stable response to a small amount of water flowing on its surface.On this basis,the flexible pressure sensor is innovatively combined with a micro-rotor to fabricate a novel urinary flow-rate meter (uroflowmeter),and results from a simulated human urination experiment show that the uroflowmeter accurately captured all the essential shape characteristics that were present in the pump-simulated urination curves.Looking ahead,this research provides a new reference for using flexible pressure sensors in urinary flow-rate monitoring.
基金National Key R&D Program of China (No. 2021YFC2100100)Shanghai Science and Technology Project (No. 21JC1403400, 23JC1402300)。
文摘Leveraging big data analytics and advanced algorithms to accelerate and optimize the process of molecular and materials design, synthesis, and application has revolutionized the field of molecular and materials science, allowing researchers to gain a deeper understanding of material properties and behaviors,leading to the development of new materials that are more efficient and reliable. However, the difficulty in constructing large-scale datasets of new molecules/materials due to the high cost of data acquisition and annotation limits the development of conventional machine learning(ML) approaches. Knowledgereused transfer learning(TL) methods are expected to break this dilemma. The application of TL lowers the data requirements for model training, which makes TL stand out in researches addressing data quality issues. In this review, we summarize recent progress in TL related to molecular and materials. We focus on the application of TL methods for the discovery of advanced molecules/materials, particularly, the construction of TL frameworks for different systems, and how TL can enhance the performance of models. In addition, the challenges of TL are also discussed.
基金supported by the National Key Research and Development Program of China(2022YFB3205500)the National Natural Science Foundation of China(62371299,62301314 and 62101329)+2 种基金the China Postdoctoral Science Foundation(2023M732198)the Natural Science Foundation of Shanghai(23ZR1430100)supported by the Center for High-Performance Computing at Shanghai Jiao Tong University.
文摘Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.
基金supported by the National Key Research and Development Project of China(2020YFA0714301)the National Natural Science Foundation of China(61833005)。
文摘Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fraction of agents.
基金supported by the Hebei Medical Science Research Project(20242002)S&T Program of Hebei(21377722D)the National Natural Science Foundation of China(82001145)。
文摘Short-chain fatty acids(SCFAs)are major metabolites produced by the gut microbiota through the fermentation of dietary fiber,and they have garnered significant attention due to their close association with host health.As important mediators between the gut microbiota and the host,SCFAs serve as energy substrates for intestinal epithelial cells and maintain homeostasis in host immune and energy metabolism by influencing host epigenetics,activating G protein-coupled receptors,and inhibiting pathogenic microbial infections.This review provides a comprehensive summary of SCFAs synthesis and metabolism and offering an overview of the latest research progress on their roles in protecting gut health,enhancing energy metabolism,mitigating diseases such as cancer,obesity,and diabetes,modulating the gut-brain axis and gut-l ung axis,and promoting bone health.
基金Project(51305467)supported by the National Natural Science Foundation of ChinaProject(12JJ4050)supported by the Natural Science Foundation of Hunan Province,China
文摘To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shimming procedure is quite complex.Therefore,an effective and reliable method in application is developed in this paper.Firstly,the best regulation of spring load is solved based on a mechanical model of the secondary suspension system,providing a target for actual adjustment.To reveal the relationship between secondary spring load distribution and shim quantity sequence,a forecasting model is constructed and then modified experimentally with consideration of car body’s elastic deformation.Further,a gradient-based algorithm with a momentum operation is proposed for the load optimization.Effectiveness of the whole method has been verified on a test rig.It is experimentally confirmed that this research provides an important basis for achieving an optimal regulation of spring load distribution for multiple types of railway vehicles.
文摘Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.
基金supported by National Key Basic Research Program of China (Grant No.2017FYA0205300 and No.2015 CB931802)National Natural Scientific Foundation of China (No. 81571835)
文摘Circulating tumor cells(CTCs) are the cancer cells that circulate in the peripheral blood after escaping from the original or metastatic tumors. CTCs could be used as non-invasive source of clinical information in early diagnosis of cancer and evaluation of cancer development. In recent years, CTC research has become a hotspot field wherein many novel CTC detection technologies based on microfluidics have been developed. Great advances have been made that exhibit obvious technical advantages, but cannot yet satisfy the current clinical requirements. In this study, we review the main advances in isolation and detection methods of CTC based on microfluidics research over several years, propose five technical indicators for evaluating these methods, and explore the application prospects. We also discuss the concepts, issues, approaches, advantages, limitations, and challenges with an aim of stimulating a broader interest in developing microfluidics-based CTC detection technology.
基金supported by National Key Basic Research Program of China(No.2017YFA0205301)Natural Science Foundation of China(31771081,81921002,and 8202010801)+2 种基金S&T Innovation 2025 Major Special Program of Ningbo(2018B10040)the Fundamental Research Funds for the Central Universities(22120210582)China Postdoctoral Science Foundation(2021TQ0247)。
文摘User-interactive electronic skin(e-skin) that could convert mechanical stimuli into distinguishable outputs displays tremendous potential for wearable devices and health care applications. However, the existing devices have the disadvantages such as complex integration procedure and lack of the intuitive signal display function. Here, we present a bioinspired user-interactive e-skin, which is simple in structure and can synchronously achieve digital electrical response and optical visualization upon external mechanical stimulus. The e-skin comprises a conductive layer with a carbon nanotubes/cellulose nanofibers/MXene nanohybrid network featuring remarkable electromechanical behaviors, and a stretchable elastomer layer, which is composed of silicone rubber and thermochromic pigments. Furthermore, the conductive nanohybrid network with outstanding Joule heating performance can generate controllable thermal energy under voltage input and then achieve the dynamic coloration of silicone-based elastomer. Especially, such an innovative fusion strategy of digital data and visual images enables the e-skin to monitor human activities with evermore intuition and accuracy. The simple design philosophy and reliable operation of the demonstrated e-skin are expected to provide an ideal platform for next-generation flexible electronics.
基金supported from 973 Project (Grant No. 2015CB931802 and 2017YFA0205301)Chinese National Natural Scientific Fund (Grant No.81327002 and 81803094)+1 种基金China Postdoctoral Science Foundation (Grant No. 2017M621486)Funding from Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument (Grant No.15DZ2252000)
文摘Objective:To construct a novel nanoplatform GNS@CaCO3/Ce6-NK by loading the CaCO3-coated gold nanostars(GNSs)with Chlorin e6 molecules(Ce6)into human peripheral blood mononuclear cells(PBMCs)-derived NK cells for tumor targeted therapy.Methods:GNS@CaCO3/Ce6 nanoparticles were prepared and characterized by TEM and UV-vis.The cell surface markers and cytokines secretion of NK cells before and after loading the GNS@CaCO3/Ce6 nanoparticles were detected by Flow Cytometry(FCM)and ELISA.Effects of the GNS@CaCO3/Ce6-NK cells on A549 cancer cells was determined by FCM and CCK-8.Intracellular fluorescent signals of GNS@CaCO3/Ce6-NK cells were detected via Confocal laser scanning microscopic(CLSM)and FCM at different time points.Intracellular ROS generation of GNS@CaCO3/Ce6-NK cells under laser irradiation were examined by FCM.The distribution of GNS@CaCO3/Ce6-NK in A549 tumor-bearing mice were observed by fluorescence imaging and PA imaging.The combination therapy of GNS@CaCO3/Ce6-NK under laser irradiation were investigated on tumor-bearing mice.Results:The coated CaC03 shell on the surface of GNSs exhibited prominent delivery and protection effect of Ce6 during the cellular uptake process.The as-prepared multifunctional GNS@CaCO3/Ce6-NK cells possessed bimodal functions of fluorescence imaging and photoacoustic imaging.The as-prepared multifunctional GNS@CaCO3/Ce6-NK cells could actively target tumor tissues with the enhanced photothermal/photodynamic therapy and immunotherapy.Conclusions:The GNS@CaCO3/Ce6-NK shows effective tumor-targeting ability and prominent therapeutic efficacy toward lung cancer A549 tumor-bearing mice.Through fully utilizing the features of GNSs and NK cells,this new nanoplatform provides a new synergistic strategy for enhanced photothermal/photodynamic therapy and immunotherapy in the field of anticancer development in the near future.
基金the Science and Technology Commission of Shanghai Municipality (No. 12nm0503500)the National Science Foundation of China (Nos. 21376148, 11374205)
文摘This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the composites are discussed briefly. The possible ongoing researches in area are speculated upon.