期刊文献+
共找到1,359篇文章
< 1 2 68 >
每页显示 20 50 100
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting
1
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 Solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Geochemical modeling to aid experimental design for multiple isotope tracer studies of coupled dissolution and precipitation reaction kinetics
2
作者 Mingkun Chen Peng Lu +1 位作者 Yongchen Song Chen Zhu 《Acta Geochimica》 EI CAS CSCD 2024年第1期1-15,共15页
It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental... It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental duration, optimal sampling schedule, effects of different experimental conditions, and how to maximize the experimental outputs prior to the actual experiments. Geochemical modeling is an efficient and effective tool to assist the experimental design by virtually running all scenarios of interest for the studied system and predicting the experimental outcomes. Here we demonstrated an example of geochemical modeling assisted experimental design of coupled labradorite dissolution and calcite and clayey mineral precipitation using multiple isotope tracers. In this study, labradorite(plagioclase) was chosen as the reactant because it is both a major component and one of the most reactive minerals in basalt. Following our isotope doping studies of single minerals in the last ten years, initial solutions in the simulations were doped withmultiple isotopes(e.g., Ca and Si). Geochemical modeling results show that the use of isotope tracers gives us orders of magnitude more sensitivity than the conventional method based on concentrations and allows us to decouple dissolution and precipitation reactions at near-equilibrium condition. The simulations suggest that the precise unidirectional dissolution rates can inform us which rate laws plagioclase dissolution has followed. Calcite precipitation occurred at near-equilibrium and the multiple isotope tracer experiments would provide near-equilibrium precipitation rates, which was a challenge for the conventional concentration-based experiments. In addition, whether the precipitation of clayey phases is the rate-limiting step in some multi-mineral systems will be revealed. Overall, the modeling results of multimineral reaction kinetics will improve the understanding of the coupled dissolution–precipitation in the multi-mineral systems and the quality of geochemical modeling prediction of CO_(2) removal and storage efficacy in the basalt systems. 展开更多
关键词 Kinetics FELDSPAR Isotope doping Near-equilibrium CO_(2)sequestration BASALT
下载PDF
Numerical and experimental investigation into the evolution of the shock wave when a muzzle jet impacts a constrained moving body
3
作者 Zijie Li Hao Wang +1 位作者 Changshun Chen Kun Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期317-326,共10页
The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of th... The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads. 展开更多
关键词 Shock wave/vortex interference Muzzle jet Constrained boundary Dynamic grid
下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage
4
作者 Baoshan Xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
下载PDF
Coordination of distinctive pesticide adjuvants and atomization nozzles on droplet spectrum evolution for spatial drift reduction
5
作者 Shidong Xue Jingkun Han +3 位作者 Xi Xi Zhong Lan Rongfu Wen Xuehu Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期250-262,共13页
Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants a... Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application. 展开更多
关键词 Pesticide drift Spray droplets Particle size distribution Spray atomization Transport processes ADJUVANTS
下载PDF
Importance of oxygen-containing functionalities and pore structures of biochar in catalyzing pyrolysis of homologous poplar
6
作者 Li Qiu Chao Li +6 位作者 Shu Zhang Shuang Wang Bin Li Zhenhua Cui Yonggui Tang Obid Tursunov Xun Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期200-211,共12页
Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar... Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts. 展开更多
关键词 Poplar wood Catalytic pyrolysis Char catalyst Volatile-char interaction BIO-OIL
下载PDF
Natural Convection and Irreversibility of Nanofluid Due to Inclined Magnetohydrodynamics(MHD)Filled in a Cavity with Y-Shape Heated Fin:FEM Computational
7
作者 Afraz Hussain Majeed Rashid Mahmood +3 位作者 Sayed M.Eldin Imran Saddique S.Saleem Muhammad Jawad 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1505-1519,共15页
This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while th... This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while the remaining walls remain cold.All walls are subject to impermeability and non-slip conditions.The mathematical modeling of the problem is demonstrated by the continuity,momentum,and energy equations incorporating the inclined magnetic field.For elucidating the flow characteristics Finite ElementMethod(FEM)is implemented using stable FE pair.A hybrid fine mesh is used for discretizing the domain.Velocity and thermal plots concerning parameters are drawn.In addition,a detailed discussion regarding generation energy by monitoring changes in magnetic,viscous,total,and thermal irreversibility is provided.In addition,line graphs are created for the u and v components of the velocity profile to predict the flow behavior.Current simulations assume the dimensionless representative of magnetic field Hartmann number Ha between 0 and 100 and a magnetic field inclination between 0 and 90 degrees.A constant 4% volume proportion of nanoparticles is employed throughout all scenarios. 展开更多
关键词 Finite element method nanomaterials entropy MHD square cavity Y-fin
下载PDF
Evaporative Cooling Applied in Thermal Power Plants:A Review of the State-ofthe-Art and Typical Case Studies
8
作者 Tiantian Liu Huimin Pang +7 位作者 Suoying He Bin Zhao Zhiyu Zhang Jucheng Wang Zhilan Liu Xiang Huang Yuetao Shi Ming Gao 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2229-2265,共37页
A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-coo... A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption. 展开更多
关键词 Direct evaporative cooling cooling tower cooling performance wet media nozzle spray thermal power plants
下载PDF
System Energy and Efficiency Analysis of 12.5 W VRFB with Different Flow Rates
9
作者 Kehuan Xie Longhai Yu Chuanchang Li 《Energy Engineering》 EI 2023年第12期2903-2915,共13页
Vanadium redox flow battery(VRFB)is considered one of the most potential large-scale energy storage technolo-gies in the future,and its electrolyte flow rate is an important factor affecting the performance of VRFB.To... Vanadium redox flow battery(VRFB)is considered one of the most potential large-scale energy storage technolo-gies in the future,and its electrolyte flow rate is an important factor affecting the performance of VRFB.To study the effect of electrolyte flow rate on the performance of VRFB,the hydrodynamic model is established and a VRFB system is developed.The results show that under constant current density,with the increase of electrolyte flow rate,not only the coulombic efficiency,energy efficiency,and voltage efficiency will increase,but also the capacity and energy discharged by VRFB will also increase.But on the other hand,as the flow rate increases,the power of the pump also increases,resulting in a decrease in system efficiency.The energy discharged by the system does not increase with the increase in flow rate.Considering the balance between efficiency and pump power loss,it is experimentally proved that 120 mL·min-1 is the optimal working flow rate of the VRFB system,which can maximize the battery performance and discharge more energy. 展开更多
关键词 Vanadium redox flow battery flow rate system energy EFFICIENCY
下载PDF
Ion–Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density 被引量:1
10
作者 Yongjie He Shaowei Li +15 位作者 Rui Chen Xu Liu George Omololu Odunmbaku Wei Fang Xiaoxue Lin Zeping Ou Qianzhi Gou Jiacheng Wang Nabonswende Aida Nadege Ouedraogo Jing Li Meng Li Chen Li Yujie Zheng Shanshan Chen Yongli Zhou Kuan Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期193-203,共11页
Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the uti... Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials. 展开更多
关键词 Ionic thermoelectric Ion–electron coupling Ionic conductivity THERMOPOWER
下载PDF
Recent advancement and future challenges of photothermal catalysis for VOCs elimination:From catalyst design to applications 被引量:1
11
作者 Yang Yang Shenghao Zhao +7 位作者 Lifeng Cui Fukun Bi Yining Zhang Ning Liu Yuxin Wang Fudong Liu Chi He Xiaodong Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期654-672,共19页
Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of... Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of photothermal catalytic removal of volatile organic compounds(VOCs)by nano-catalysts in recent years is systematically reviewed.First,the fundamentals of photothermal catalysis and the fabrication of catalysts are described,and the design strategy of optimizing photothermal catalysis performance is proposed.Second,the performance for VOC degradation with photothermal catalysis is evaluated and compared for the batch and continuous systems.Particularly,the catalytic mechanism of VOC oxidation is systematically introduced based on experimental and theoretical study.Finally,the future limitations and challenges have been discussed,and potential research directions and priorities are highlighted.A broad view of recent photothermal catalyst fabrication,applications,challenges,and prospects can be systemically provided by this review. 展开更多
关键词 Photothermal catalysis VOCS Catalyst design Light-driven thermal catalysis Photothermal synergistic effect
下载PDF
Integration of Low-level Waste Heat Recovery and Liquefied Nature Gas Cold Energy Utilization 被引量:16
12
作者 白菲菲 张早校 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期95-99,共5页
分别地,二个新奇热周期基于 Brayton 周期和 Rankine 被建议它集成低级废热和液化性质气体(LNG ) 的恢复为发电的冷精力利用。在低级废热,低温度的 exergy 和 LNG 的压力 exergy 通过系统合成高效地被利用的地方,精力的串联利用在二... 分别地,二个新奇热周期基于 Brayton 周期和 Rankine 被建议它集成低级废热和液化性质气体(LNG ) 的恢复为发电的冷精力利用。在低级废热,低温度的 exergy 和 LNG 的压力 exergy 通过系统合成高效地被利用的地方,精力的串联利用在二个热周期被认识到。模拟加 10.2 用商业白杨被执行,并且结果被分析。与常规 Brayton 周期和 Rankine 相比,二个新奇周期在 exergy 效率带 60.94% 和 60% ,分别地并且 53.08% 和 52.31% 在热效率分别地。 展开更多
关键词 低温位 废热回收 液化天然气 冷能利用
下载PDF
Numerical study of the deep removal of R134a from non-condensable gas mixture by cryogenic condensation and de-sublimation
13
作者 Hongbo Tan Boshi Shao Na Wen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期180-191,共12页
Nowadays,the limits on greenhouse gas emissions are becoming increasingly stringent.In present research,a two-dimensional numerical model was established to simulate the deep removal of 1,1,1,2-tetrafluoroethane(R134a... Nowadays,the limits on greenhouse gas emissions are becoming increasingly stringent.In present research,a two-dimensional numerical model was established to simulate the deep removal of 1,1,1,2-tetrafluoroethane(R134a)from the non-condensable gas(NCG)mixture by cryogenic condensation and de-sublimation.The wall condensation method was compiled into the Fluent software to calculate the condensation of R134a from the gas mixture.Besides,the saturated thermodynamic properties of R134a under its triple point were extrapolated by the equation of state.The simulation of the steam condensation with NCG was conducted to verify the validity of the model,the results matched well with the experimental data.Subsequently,the condensation characteristics of R134a with NCG and the thermodynamic parameters affecting condensation were studied.The results show that the section with relatively higher removal efficiency is usually near the inlet.The cold wall temperature has a great influence on the R134a removal performance,e.g.,a 15 K reduction of the wall temperature brings a reduction in the outlet R134a molar fraction by 85.43%.The effect of changing mass flow rate on R134a removal is mainly reflected at the outlet,where an increase in mass flow rate of 12.6% can aggravate the outlet molar fraction to 210.3% of the original.The research can provide a valuable reference for the simulation of the deep removal of various low-concentration gas using condensation and de-sublimation methods. 展开更多
关键词 Numerical simulation Greenhouse gas CONDENSATION De-sublimation Vapor deep removal Non-condensable gas
下载PDF
Model for seawater fouling and effects of temperature,flow velocity and surface free energy on seawater fouling 被引量:3
14
作者 Dazhang Yang Jianhua Liu +1 位作者 Xiaoxue E Linlin Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第5期658-664,共7页
A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the K... A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model.The present model parameters include the integrated kinetic rate of deposition(k d)and the integrated kinetic rate of removal(k r),which have clear physical signi ficance.A seawater-fouling monitoring device was established to validate the model.The experimental data were well fitted to the model,and the parameters were obtained in different conditions.SEM and EDX analyses were performed after the experiments,and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hydroxide.The effects of surface temperature,flow velocity and surface free energy were assessed by the model and the experimental data.The results indicate that the seawater fouling becomes aggravated as the surface temperature increased in a certain range,and the seawater fouling resistance reduced as the flow velocity of seawater increased.Furthermore,the effect of the surface free energy of metals was analyzed,showing that the lower surface free energy mitigates the seawater fouling accumulation. 展开更多
关键词 表面自由能 海水污染 污染模型 表面温度 海水流速 沉积动力学 实验数据 动力学模型
下载PDF
Influence of specific speed on hydraulic performances and pressure fluctuations in mixed-flow pumps
15
作者 FU Yanxia JIA Qi +1 位作者 SHEN Yang PACE Giovanni 《排灌机械工程学报》 CSCD 北大核心 2023年第10期981-987,共7页
A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence ... A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence model under different operating conditions to investigate the relationship between the impeller specific speed and the pump performance as well as pressure pulsations.Meanwhile,the pump performance and pressure pulsations inside the mixed-flow pump with three different specific speeds were also analyzed and compared with the corresponding test data.From the results,the averaged deviations between the predicted and tested head among different impellers are below 5%,and with respect to the equivalent impeller specific speeds of 280 and 260,the values are 4.30%and 3.69%,respectively.For all the impeller schemes,the best efficiency point of the mixed-flow pump is found at the flow rate of 1.2 Q_(d) and the higher head deviation occurs at lower flow rates.Especially,it can be found that the specific speed has a slight effect on the pressure fluctuation in the impellers.Eventually,it is determined that the pump performance curves calculated by numerical simu-lations have good agreement with the relevant experimental results,which verifies that the numerical methods used in the present study are accurate to a certain extent.Furthermore,the results also provide some references to the pressure pulsation analysis and the performance improvement of the mixed-flow pump design. 展开更多
关键词 mixed-flow pumps impeller specific speed hydraulic performance pressure pulsation numerical simulation EXPERIMENT
下载PDF
Stability analysis of the projectile based on random center manifold reduction
16
作者 Yong Huang Chunyan Yang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期3-7,共5页
The center manifold method has been widely used in the field of stochastic dynamics as a dimensionality reduction method.This paper studied the angular motion stability of a projectile system under random disturbances... The center manifold method has been widely used in the field of stochastic dynamics as a dimensionality reduction method.This paper studied the angular motion stability of a projectile system under random disturbances.The random bifurcation of the projectile is studied using the idea of the Routh-Hurwitz stability criterion,the center manifold reduction,and the polar coordinates transformation.Then,an approximate analytical presentation for the stationary probability density function is found from the related Fokker–Planck equation.From the results,the random dynamical system of projectile generates three different dynamical behaviors with the changes of the bifurcation parameter and the noise strength,which can be a reference for projectile design. 展开更多
关键词 Center manifold reduction FPK equation Routh-Hurwitz stability criterion Projectile stability The polar coordinates transformation
下载PDF
Hybrid model based on K-means++ algorithm, optimal similar day approach, and long short-term memory neural network for short-term photovoltaic power prediction
17
作者 Ruxue Bai Yuetao Shi +1 位作者 Meng Yue Xiaonan Du 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期184-196,共13页
Photovoltaic(PV) power generation is characterized by randomness and intermittency due to weather changes.Consequently, large-scale PV power connections to the grid can threaten the stable operation of the power syste... Photovoltaic(PV) power generation is characterized by randomness and intermittency due to weather changes.Consequently, large-scale PV power connections to the grid can threaten the stable operation of the power system. An effective method to resolve this problem is to accurately predict PV power. In this study, an innovative short-term hybrid prediction model(i.e., HKSL) of PV power is established. The model combines K-means++, optimal similar day approach,and long short-term memory(LSTM) network. Historical power data and meteorological factors are utilized. This model searches for the best similar day based on the results of classifying weather types. Then, the data of similar day are inputted into the LSTM network to predict PV power. The validity of the hybrid model is verified based on the datasets from a PV power station in Shandong Province, China. Four evaluation indices, mean absolute error, root mean square error(RMSE),normalized RMSE, and mean absolute deviation, are employed to assess the performance of the HKSL model. The RMSE of the proposed model compared with those of Elman, LSTM, HSE(hybrid model combining similar day approach and Elman), HSL(hybrid model combining similar day approach and LSTM), and HKSE(hybrid model combining K-means++,similar day approach, and LSTM) decreases by 66.73%, 70.22%, 65.59%, 70.51%, and 18.40%, respectively. This proves the reliability and excellent performance of the proposed hybrid model in predicting power. 展开更多
关键词 PV power prediction hybrid model K-means++ optimal similar day LSTM
下载PDF
Active Kriging-Based Adaptive Importance Sampling for Reliability and Sensitivity Analyses of Stator Blade Regulator
18
作者 Hong Zhang Lukai Song Guangchen Bai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1871-1897,共27页
The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computi... The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computing efficiency and accuracy of the current analysismethods.In this case,by fitting the implicit limit state function(LSF)with active Kriging(AK)model and reducing candidate sample poolwith adaptive importance sampling(AIS),a novel AK-AIS method is proposed.Herein,theAKmodel andMarkov chainMonte Carlo(MCMC)are first established to identify the most probable failure region(s)(MPFRs),and the adaptive kernel density estimation(AKDE)importance sampling function is constructed to select the candidate samples.With the best samples sequentially attained in the reduced candidate samples and employed to update the Kriging-fitted LSF,the failure probability and sensitivity indices are acquired at a lower cost.The proposed method is verified by twomulti-failure numerical examples,and then applied to the reliability and sensitivity analyses of a typical stator blade regulator.Withmethods comparison,the proposed AK-AIS is proven to hold the computing advantages on accuracy and efficiency in complex reliability and sensitivity analysis problems. 展开更多
关键词 Markov chain Monte Carlo active Kriging adaptive kernel density estimation importance sampling
下载PDF
Numerical Stability and Accuracy of Contact Angle Schemes in Pseudopotential Lattice Boltzmann Model for Simulating Static Wetting and Dynamic Wetting
19
作者 Dongmin Wang Gaoshuai Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期299-318,共20页
There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity sch... There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity scheme(IVD scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall(MPB-C scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes(MPB-W scheme)and the geometric formulation scheme(GF scheme).But the numerical stability and accuracy of the schemes for wetting simulation remain unclear in the past.In this paper,the numerical stability and accuracy of these schemes are clarified for the first time,by applying the five widely used contact angle schemes to simulate a two-dimensional(2D)sessile droplet on wall and capillary imbibition in a 2D channel as the examples of static wetting and dynamic wetting simulations respectively.(i)It is shown that the simulated contact angles by the GF scheme are consistent at different density ratios for the same prescribed contact angle,but the simulated contact angles by the PB scheme,IVD scheme,MPB-C scheme and MPB-W scheme change with density ratios for the same fluid-solid interaction strength.The PB scheme is found to be the most unstable scheme for simulating static wetting at increased density ratios.(ii)Although the spurious velocity increases with the increased liquid/vapor density ratio for all the contact angle schemes,the magnitude of the spurious velocity in the PB scheme,IVD scheme and GF scheme are smaller than that in the MPB-C scheme and MPB-W scheme.(iii)The fluid density variation near the wall in the PB scheme is the most significant,and the variation can be diminished in the IVD scheme,MPB-C scheme andMPBWscheme.The variation totally disappeared in the GF scheme.(iv)For the simulation of capillary imbibition,the MPB-C scheme,MPB-Wscheme and GF scheme simulate the dynamics of the liquid-vapor interface well,with the GF scheme being the most accurate.The accuracy of the IVD scheme is low at a small contact angle(44 degrees)but gets high at a large contact angle(60 degrees).However,the PB scheme is the most inaccurate in simulating the dynamics of the liquid-vapor interface.As a whole,it is most suggested to apply the GF scheme to simulate static wetting or dynamic wetting,while it is the least suggested to use the PB scheme to simulate static wetting or dynamic wetting. 展开更多
关键词 Pseudopotential lattice Boltzmann model contact angle scheme static wetting dynamic wetting capillary imbibition
下载PDF
Engine Performance and Emission Characteristics of Cellulosic Jet Biofuel Blends
20
作者 Liu Ziyu Yang Xiaoyi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期29-36,共8页
Aviation biofuels have the potential to reduce greenhouse gas emissions and improve engine performance. Theaim of this study was to assess the suitability of various jet biofuel blends for use in a ZF850 jet engine. T... Aviation biofuels have the potential to reduce greenhouse gas emissions and improve engine performance. Theaim of this study was to assess the suitability of various jet biofuel blends for use in a ZF850 jet engine. The effects of theblends on engine performance were assessed under various thrust output settings with respect to the thrust, thrust-specificfuel consumption, emission characteristics, exhaust gas temperature, acceleration and deceleration performance. Blendingwith catalytic hydrothermolysis jet (CHJ) fuel improved the combustion efficiency by reducing carbon monoxide andunburned hydrocarbon emissions and markedly reducing PM2.5 emissions. However, a slight reduction in thrust output wasobserved. Throughout the entire range of thrust output settings, the 10% CHJ fuel blend provided higher thrust, lower thrustspecificfuel consumption, and lower exhaust gas temperature. The CHJ fuel blends exhibited no significant effects on thedeceleration performance, while the 5% and 15% blends caused a 0.4 s delay in the time required for complete acceleration.Global sensitivity analysis was conducted to better understand the effects of the fuel blends on engine performance andemission characteristics. This analysis identified the critical parameters of engine performance as engine-influence and fuelinfluenceparameters and engine-influence and fuel-less influence parameters. The overall engine efficiency benefit was nonlinearlyrelated to the blend ratio and thrust output. The results indicate that the use of CHJ fuel blends can improve engineefficiency if they comply with the engine design and control regulations. 展开更多
关键词 aviation biofuel THRUST emission thrust-specific fuel consumption
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部