To promote the rational development and use of clean coal resources in China, data on the regional and age distribution of sulfur, arsenic and other harmful elements in Chinese coal was broadly collected, tested for c...To promote the rational development and use of clean coal resources in China, data on the regional and age distribution of sulfur, arsenic and other harmful elements in Chinese coal was broadly collected, tested for content, and analyzed. Coal in northwestern China is characterized by low to extremely low levels of sulfur; the coal of the Taiyuan Formation in northern China mainly has high-sulfur content; that of the Shanxi Formation is mainly characterized by low sulfur coal; and the Late Permian coal in southern China has overall higher sulfur content; other regions have low sulfur coal. The average content of harmful trace elements in the bulk of China's coal is similar to the corresponding content in the coal of the North America and the rest of the world, whereas the content of various elements (Hg, Sb and Se) is different in magnitude to the corresponding percentage in the crust. The average content of the elements Cr, Se, Co, Be, U, Br in Late Permian coal in S China ranks first in the country whereas the average content of Hg and CI in the coals of Late Carboniferous to Early Permian age in N China are the highest. The average content of Mn in Early and Middle Jurassic coal is higher in NW China. The high content of harmful elements in some coal should cause particular concern both in the development and utilization of coal.展开更多
Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser...Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.展开更多
Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal sea...Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal seams and in front of excavated roadways. Survey devices, working methods and techniques as well as data processing and interpretation are discussed systematically. In addition, the direction of mini-wireframe emission electromagnetic wave of the full space transient electromagnetism technique was verified by an underground borehole for water detection and drainage. The result indicates that this technique can detect both horizontal and vertical development rules of abnormal water bodies to a certain depth below the floor of coal seams and can also detect the abnormal, low resistance water bodies within a certain distance of roofs. Furthermore, it can detect such abnormal bodies in ahead of the excavated roadway front. Limited by the underground environment, the full space transient electromagnetism technique can detect to a depth of only 120 m or so.展开更多
Quantitative description of desorption stages of coalbed methane is an important basis to objectively understand the production of coalbed methane well,to diagnose the production state,and to optimize the management o...Quantitative description of desorption stages of coalbed methane is an important basis to objectively understand the production of coalbed methane well,to diagnose the production state,and to optimize the management of draining and collection of coalbed methane.A series of isothermal adsorption experiments were carried out with 12 anthracite samples from 6 coalbed methane wells located in the south of the Qinshui Basin,based on the results of isothermal adsorption experiments,and an analytical model was developed based on the Langmuir sorption theory.With the model,a numerical method that adopts equivalent desorption rate and its curve was established,which can be used to characterize the staged desorption of coalbed methane.According to the experimental and numerical characterizations,three key pressure points determined by the equivalent desorption rate curvature that defines pressure-declining desorption stage,have been proposed and confirmed,namely,start-up pressure,transition pressure and sensitive pressure.By using these three key pressure points,the process of coalbed methane desorption associated with isothermal adsorption experiments can be divided into four stages,i.e.,zero desorption stage,slow desorption stage,transition desorption stage,and sensitive desorption stage.According to analogy analysis,there are differences and similarities between the processes of coalbed methane desorption identified by isothermal adsorption experiments and observed in gas production.Moreover,it has been found that larger Langmuir volume and ratio of Langmuir constants are beneficial to earlier advent of steady production stage,whereas it is also possible that the declining production stage may occur ahead of schedule.展开更多
文摘To promote the rational development and use of clean coal resources in China, data on the regional and age distribution of sulfur, arsenic and other harmful elements in Chinese coal was broadly collected, tested for content, and analyzed. Coal in northwestern China is characterized by low to extremely low levels of sulfur; the coal of the Taiyuan Formation in northern China mainly has high-sulfur content; that of the Shanxi Formation is mainly characterized by low sulfur coal; and the Late Permian coal in southern China has overall higher sulfur content; other regions have low sulfur coal. The average content of harmful trace elements in the bulk of China's coal is similar to the corresponding content in the coal of the North America and the rest of the world, whereas the content of various elements (Hg, Sb and Se) is different in magnitude to the corresponding percentage in the crust. The average content of the elements Cr, Se, Co, Be, U, Br in Late Permian coal in S China ranks first in the country whereas the average content of Hg and CI in the coals of Late Carboniferous to Early Permian age in N China are the highest. The average content of Mn in Early and Middle Jurassic coal is higher in NW China. The high content of harmful elements in some coal should cause particular concern both in the development and utilization of coal.
基金Projects(41330638,41272154)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaProject(2014M551705)supported by the China Postdoctoral Science Foundation
文摘Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.
文摘Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal seams and in front of excavated roadways. Survey devices, working methods and techniques as well as data processing and interpretation are discussed systematically. In addition, the direction of mini-wireframe emission electromagnetic wave of the full space transient electromagnetism technique was verified by an underground borehole for water detection and drainage. The result indicates that this technique can detect both horizontal and vertical development rules of abnormal water bodies to a certain depth below the floor of coal seams and can also detect the abnormal, low resistance water bodies within a certain distance of roofs. Furthermore, it can detect such abnormal bodies in ahead of the excavated roadway front. Limited by the underground environment, the full space transient electromagnetism technique can detect to a depth of only 120 m or so.
基金supported by National KeyBasic Research Program of China (Grant No. 2009CB219605)Key Project of National Natural Science Foundation of China (Grant No.40730422)Grand Science and Technology Special Project of China(Grant No. 2011ZX05034-04)
文摘Quantitative description of desorption stages of coalbed methane is an important basis to objectively understand the production of coalbed methane well,to diagnose the production state,and to optimize the management of draining and collection of coalbed methane.A series of isothermal adsorption experiments were carried out with 12 anthracite samples from 6 coalbed methane wells located in the south of the Qinshui Basin,based on the results of isothermal adsorption experiments,and an analytical model was developed based on the Langmuir sorption theory.With the model,a numerical method that adopts equivalent desorption rate and its curve was established,which can be used to characterize the staged desorption of coalbed methane.According to the experimental and numerical characterizations,three key pressure points determined by the equivalent desorption rate curvature that defines pressure-declining desorption stage,have been proposed and confirmed,namely,start-up pressure,transition pressure and sensitive pressure.By using these three key pressure points,the process of coalbed methane desorption associated with isothermal adsorption experiments can be divided into four stages,i.e.,zero desorption stage,slow desorption stage,transition desorption stage,and sensitive desorption stage.According to analogy analysis,there are differences and similarities between the processes of coalbed methane desorption identified by isothermal adsorption experiments and observed in gas production.Moreover,it has been found that larger Langmuir volume and ratio of Langmuir constants are beneficial to earlier advent of steady production stage,whereas it is also possible that the declining production stage may occur ahead of schedule.