The present study aims to investigate the interaction between the free surface and a semi/shallowly submerged underwater vehicle,especially when the submergence depth h is smaller than 0.75D(D:submarine maximum diamet...The present study aims to investigate the interaction between the free surface and a semi/shallowly submerged underwater vehicle,especially when the submergence depth h is smaller than 0.75D(D:submarine maximum diameter).In this respect,the straight-ahead simulations of the generic SUBOFF underwater vehicle geometry are conducted with constant forward velocities using the Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations with a Shear-Stress Transport(SST)k-ωturbulence model in commercial code Fluent,at submergence depths and Froude numbers ranging from h=0 to h=3.3D and from Fn=0.205 to Fn=0.512,respectively.The numerical models are verified against the existing experimental data.The analysis of the obtained results indicates that in the case of the semi and shallowly submerged underwater vehicle(UV),both the submergence depth and forward velocity have a great effect on the behaviors of hydrodynamic forces acting on the UV.The magnitude of maximum total resistance may reach almost five times the value of resistance exerted on the totally submerged hull.Both the forces acting on the UV and the generated waves when the submergence depth h is smaller than 0.75D are significantly different from those whenr h is larger than 0.75D.The conclusions can be used as reference for future research on near free surface motions of underwater vehicles and the design of small water-plane area twin hull.展开更多
Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and...Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and slope separately.The observed ISWs exhibit the first mode depression ISWs.The amplitudes of ISWs on the shelf and slope areas reach 50 m and 80 m,respectively.The upper layer velocity in the westward direction is about 0.8 m/s on the continental shelf and 0.9 m/s on the continental slope during the passing through of ISWs.The lower layer is dominated by the eastward compensating flow.In the vertical direction,the water in front of the wave flows downward,while the water behind the wave flows upward,and the maximum vertical velocity exceeds 0.2 m/s.Numerical simulation results show that the larger the amplitude of ISWs,the larger the load on the submerged body.The force on the submerged body by ISWs is dominated by the vertical force,and the corresponding maximum vertical forces on the continental shelf and slope are−25 kN and −27 kN.The submerged body is subjected to a large counterclockwise moment and the sudden change of the moment will also cause the submerged body to capsize.This paper not only gives a deeper understanding of the characteristics of ISWs from the deep continental slope to the shallow continental shelf,but also has a certain guiding value for the prediction of ISWs and for marine military activities.展开更多
Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util...Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.展开更多
In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuate...In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuates with a small amplitude.A kind of proper transformation is used so that the governing equations describing the momentum and thermal energy are reduced to a set of non-dimensional equations.The analytical expressions of the pulsating velocity,temperature,and Nusselt number of nanofluids are obtained by the perturbation technique.In the present study,the effects of the Cu-H2O and Al_(2)O_(3)-H2O nanofluids on the flow and heat transfer in pulsating flow are compared and analyzed.The results show that the convective heat transfer effect of Cu-H2O nanofluids is better than that of Al_(2)O_(3)-H2O nanofluids.Also,the effects of the Hartmann number and pulsation amplitude on the velocity,temperature,and Nusselt number are examined and discussed in detail.The present work indicates that increasing the Hartmann number and pulsation amplitude can enhance the heat transfer of the pulsating flow.In addition,selecting an optimal pulsation frequency can maximize the convective heat transfer of the pulsating flow.Therefore,improved understanding of these fundamental mechanisms is conducive to the optimal design of thermal systems.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
The present study establishes a simple numerical model for the coupled response of a steel catenary riser(SCR) subjected to coplanar vessel motion and vortex-induced vibration(VIV). Owing to the large deflection of th...The present study establishes a simple numerical model for the coupled response of a steel catenary riser(SCR) subjected to coplanar vessel motion and vortex-induced vibration(VIV). Owing to the large deflection of the SCR, the geometric nonlinearity is considered in this model. The hydrodynamic force comprises the excitation force and hydrodynamic damping, where the excitation force that only exists when the non-dimensional frequency is located in the lock-in range, is associated with the VIV. The hydrodynamic force model is validated based on the published VIV test data.As for the seabed resistance at the touchdown zone(TDZ), integrated with an initial seabed trench, the hysteretic feature is modeled. Based on the model, the study emphasizes on the coupled response characteristics near the touchdown point(TDP) induced by coplanar vessel heave and VIV, and analyzes the sensitivity of the coupled response to the heaving amplitude and frequency. It is found that with the increase of the heave amplitude and frequency, the VIV can be obviously mitigated, but the heave-related response in the coupled analysis seems to be close to that in the heave-only simulation. Finally, the fatigue damage near TDP is parametrically investigated based on the separate analysis and the coupled analysis. The results demonstrate that the coupled effect plays a significant role in the fatigue assessment near TDP. Besides, the proportion of the coupled effect accounting for the total fatigue damage decreases with the increasing seabed stiffness, while increases with the increasing seabed trench depth.展开更多
In this work,a novel fluid-structure coupling method called the common node discrete element-smoothed particle hydrodynamics(DS-SPH)method is introduced.This framework combines the principles of the common node discre...In this work,a novel fluid-structure coupling method called the common node discrete element-smoothed particle hydrodynamics(DS-SPH)method is introduced.This framework combines the principles of the common node discrete element method(DEM)and smoothed particle hydrodynamics(SPH)to construct DEM-SPH particles situated on the same node.By doing so,the DEM particles can interact with the SPH particles within their support domain,enabling fluid-structure interaction(FSI).To determine the DEM microscopic parameters required for this method,uniaxial compression and three-point bending tests are conducted on sea ice.To verify the proposed model,we select the interaction between sea ice and structures as a case study.Through simulation,the model's capability of accurately depicting sea ice deformation and fracture has been demonstrated.The results indicate that the inclusion of SPH particles with fluid properties in the DEM model has minimal impact on the main mechanical parameters of sea ice.Additionally,it helps prevent the occurrence of particle splashing during cement failure.However,it is observed that the size of DEM particles and the friction between DEM particles and the structure significantly influence the macroscopic mechanical behavior of the common-node DEM-SPH model.Finally,we compare the fracture behavior of sea ice and the ice forces acting on structures obtained from the current model with on-site measured results.The agreement between the two sets of data is excellent,further validating the effectiveness of the proposed model in practical applications.展开更多
The cylindrical shell is one of the main structural parts in ocean engineering structures.These cylinders are mostly of medium length,which means that the radius of the cross section is significantly smaller than the ...The cylindrical shell is one of the main structural parts in ocean engineering structures.These cylinders are mostly of medium length,which means that the radius of the cross section is significantly smaller than the length of the cylindrical shell.From the viewpoint of the shell theory,they belong to the mid-long cylindrical shell category.To solve mechanical problems on this kind of structure,especially a cracked cylindrical shell,analysis based on shell theory is necessary.At present the generally used solving system for the mid-long cylindrical shell is too complicated,difficult to solve,and inapplicable to engineering.This paper introduced the Sanders' mid-long cylindrical shell theory which reduces the difficulty of the solution process,and will be suitable for solving problems with complicated boundary conditions.On this basis,the engineering applications of this theory were discussed in conjunction with the problem of a mid-long cylindrical shell having a circumferential crack.The solution process is simple,and the closed form solution can usually be found.In practical engineering applications,it gives satisfactory precision.展开更多
Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between...Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.展开更多
The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
To realize the low-resistance shape optimization design of amphibious robots,an efficient optimization design framework is proposed to improve the geometric deformation flexibility and optimization efficiency.In the p...To realize the low-resistance shape optimization design of amphibious robots,an efficient optimization design framework is proposed to improve the geometric deformation flexibility and optimization efficiency.In the proposed framework,the free-form deformation parametric model of the flat slender body is established and an analytical calculation method for the height constraints is derived.CFD method is introduced to carry out the high-precision resistance calculation and a constrained Kriging-based optimization method is built to improve the optimization efficiency by circularly infilling the new sample points which satisfying the constraints.Finally,the shape of an amphibious robot example is optimized to get the low-resistance shape and the results demonstrate that the presented optimization design framework has the advantages of simplicity,flexibility and high efficiency.展开更多
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo...According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.展开更多
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP...In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.展开更多
Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for...Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for industrial applications.In the present study,an indoor model test of the vertical hydraulic transport of particles was conducted.A noncontact optical method has been proposed to measure the local characteristics of the particles inside a vertical pipe,including the local concentration and particle velocity.The hydraulic gradient of ore transport was evaluated with various particle size distributions,particle densities,feeding concentrations and mixture flow velocities.During transport,the local concentration is larger than the feeding concentration,whereas the particle velocity is less than the mixture velocity.The qualitative effects of the local concentration and local fluid velocity on the particle velocity and slip velocity were investigated.The local fluid velocity contributes significantly to particle velocity and slip velocity,whereas the effect of the local concentration is marginal.A higher feeding concentration and mixture flow velocity result in an increased hydraulic gradient.The effect of the particle size gradation is slight,whereas the particle density plays a crucial role in the transport.展开更多
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on...This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics(CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom(3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step.The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes(sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.展开更多
Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.U...Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.Using high-resolution transmission electron microscopy and first principles calculations,the factors that affect corrosion mechanisms of the second phase in Al alloys at micro-scale and atomic-scale were examined,including the composition and structure of second phase,pH of the environment,stress and adsorption behavior of adsorbates(such as Cl^(−),H_(2)O,OH−and O_(2)^(−).展开更多
The evolution of energy, energy flux and modal structure of the internal tides (ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep con...The evolution of energy, energy flux and modal structure of the internal tides (ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a ~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m^2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs. From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.展开更多
Corrosion and fatigue cracks are major threats to the structural integrity of aging offshore platforms. For the rational estimation of the safety levels of aging platforms, a global reliability assessment approach for...Corrosion and fatigue cracks are major threats to the structural integrity of aging offshore platforms. For the rational estimation of the safety levels of aging platforms, a global reliability assessment approach for aging offshore platforms with corrosion and fatigue cracks is presented in this paper. The base shear capacity is taken as the global ultimate strength of the offshore platforms. It is modeled as a random process that decreases with time in the presence of corrosion and fatigue crack propagation. And the corrosion and fatigue crack growth rates in the main members and key joints are modeled as random variables. A simulation method of the extreme wave loads which are applied to the structures of offshore platforms is proposed too. Furthermore, the statistics of global base shear capacity and extreme wave loads are obtained by Monte Carlo simulation method. On the basis of the limit state equation of global failure mode, the instantaneous reliability and time dependent reliability assessment methods are both presented in this paper. Finally the instantaneous reliability index and time dependent failure probability of a jacket platform are estimated with different ages in the demonstration example.展开更多
The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in...The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.展开更多
The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determine...The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52372356).
文摘The present study aims to investigate the interaction between the free surface and a semi/shallowly submerged underwater vehicle,especially when the submergence depth h is smaller than 0.75D(D:submarine maximum diameter).In this respect,the straight-ahead simulations of the generic SUBOFF underwater vehicle geometry are conducted with constant forward velocities using the Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations with a Shear-Stress Transport(SST)k-ωturbulence model in commercial code Fluent,at submergence depths and Froude numbers ranging from h=0 to h=3.3D and from Fn=0.205 to Fn=0.512,respectively.The numerical models are verified against the existing experimental data.The analysis of the obtained results indicates that in the case of the semi and shallowly submerged underwater vehicle(UV),both the submergence depth and forward velocity have a great effect on the behaviors of hydrodynamic forces acting on the UV.The magnitude of maximum total resistance may reach almost five times the value of resistance exerted on the totally submerged hull.Both the forces acting on the UV and the generated waves when the submergence depth h is smaller than 0.75D are significantly different from those whenr h is larger than 0.75D.The conclusions can be used as reference for future research on near free surface motions of underwater vehicles and the design of small water-plane area twin hull.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20210885)the National Natural Science Foundation of China(Grant Nos.52372356,52371277,and 42076005)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010890).
文摘Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and slope separately.The observed ISWs exhibit the first mode depression ISWs.The amplitudes of ISWs on the shelf and slope areas reach 50 m and 80 m,respectively.The upper layer velocity in the westward direction is about 0.8 m/s on the continental shelf and 0.9 m/s on the continental slope during the passing through of ISWs.The lower layer is dominated by the eastward compensating flow.In the vertical direction,the water in front of the wave flows downward,while the water behind the wave flows upward,and the maximum vertical velocity exceeds 0.2 m/s.Numerical simulation results show that the larger the amplitude of ISWs,the larger the load on the submerged body.The force on the submerged body by ISWs is dominated by the vertical force,and the corresponding maximum vertical forces on the continental shelf and slope are−25 kN and −27 kN.The submerged body is subjected to a large counterclockwise moment and the sudden change of the moment will also cause the submerged body to capsize.This paper not only gives a deeper understanding of the characteristics of ISWs from the deep continental slope to the shallow continental shelf,but also has a certain guiding value for the prediction of ISWs and for marine military activities.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171289,42176210,and 52201330)the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022B1515250005)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311023014).
文摘Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.
基金Project supported by the China Postdoctoral Science Foundation(No.2018M631909)the Doctor of Entrepreneurship and Innovation Project of Jiangsu Province(No.JSSCBS20221300)。
文摘In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuates with a small amplitude.A kind of proper transformation is used so that the governing equations describing the momentum and thermal energy are reduced to a set of non-dimensional equations.The analytical expressions of the pulsating velocity,temperature,and Nusselt number of nanofluids are obtained by the perturbation technique.In the present study,the effects of the Cu-H2O and Al_(2)O_(3)-H2O nanofluids on the flow and heat transfer in pulsating flow are compared and analyzed.The results show that the convective heat transfer effect of Cu-H2O nanofluids is better than that of Al_(2)O_(3)-H2O nanofluids.Also,the effects of the Hartmann number and pulsation amplitude on the velocity,temperature,and Nusselt number are examined and discussed in detail.The present work indicates that increasing the Hartmann number and pulsation amplitude can enhance the heat transfer of the pulsating flow.In addition,selecting an optimal pulsation frequency can maximize the convective heat transfer of the pulsating flow.Therefore,improved understanding of these fundamental mechanisms is conducive to the optimal design of thermal systems.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51979129)。
文摘The present study establishes a simple numerical model for the coupled response of a steel catenary riser(SCR) subjected to coplanar vessel motion and vortex-induced vibration(VIV). Owing to the large deflection of the SCR, the geometric nonlinearity is considered in this model. The hydrodynamic force comprises the excitation force and hydrodynamic damping, where the excitation force that only exists when the non-dimensional frequency is located in the lock-in range, is associated with the VIV. The hydrodynamic force model is validated based on the published VIV test data.As for the seabed resistance at the touchdown zone(TDZ), integrated with an initial seabed trench, the hysteretic feature is modeled. Based on the model, the study emphasizes on the coupled response characteristics near the touchdown point(TDP) induced by coplanar vessel heave and VIV, and analyzes the sensitivity of the coupled response to the heaving amplitude and frequency. It is found that with the increase of the heave amplitude and frequency, the VIV can be obviously mitigated, but the heave-related response in the coupled analysis seems to be close to that in the heave-only simulation. Finally, the fatigue damage near TDP is parametrically investigated based on the separate analysis and the coupled analysis. The results demonstrate that the coupled effect plays a significant role in the fatigue assessment near TDP. Besides, the proportion of the coupled effect accounting for the total fatigue damage decreases with the increasing seabed stiffness, while increases with the increasing seabed trench depth.
基金financially supported by the National Natural Science Foundation of China (Grant No.52201323)。
文摘In this work,a novel fluid-structure coupling method called the common node discrete element-smoothed particle hydrodynamics(DS-SPH)method is introduced.This framework combines the principles of the common node discrete element method(DEM)and smoothed particle hydrodynamics(SPH)to construct DEM-SPH particles situated on the same node.By doing so,the DEM particles can interact with the SPH particles within their support domain,enabling fluid-structure interaction(FSI).To determine the DEM microscopic parameters required for this method,uniaxial compression and three-point bending tests are conducted on sea ice.To verify the proposed model,we select the interaction between sea ice and structures as a case study.Through simulation,the model's capability of accurately depicting sea ice deformation and fracture has been demonstrated.The results indicate that the inclusion of SPH particles with fluid properties in the DEM model has minimal impact on the main mechanical parameters of sea ice.Additionally,it helps prevent the occurrence of particle splashing during cement failure.However,it is observed that the size of DEM particles and the friction between DEM particles and the structure significantly influence the macroscopic mechanical behavior of the common-node DEM-SPH model.Finally,we compare the fracture behavior of sea ice and the ice forces acting on structures obtained from the current model with on-site measured results.The agreement between the two sets of data is excellent,further validating the effectiveness of the proposed model in practical applications.
基金Supported by the National Natural Science Foundation of China under Grant No.(50579023).
文摘The cylindrical shell is one of the main structural parts in ocean engineering structures.These cylinders are mostly of medium length,which means that the radius of the cross section is significantly smaller than the length of the cylindrical shell.From the viewpoint of the shell theory,they belong to the mid-long cylindrical shell category.To solve mechanical problems on this kind of structure,especially a cracked cylindrical shell,analysis based on shell theory is necessary.At present the generally used solving system for the mid-long cylindrical shell is too complicated,difficult to solve,and inapplicable to engineering.This paper introduced the Sanders' mid-long cylindrical shell theory which reduces the difficulty of the solution process,and will be suitable for solving problems with complicated boundary conditions.On this basis,the engineering applications of this theory were discussed in conjunction with the problem of a mid-long cylindrical shell having a circumferential crack.The solution process is simple,and the closed form solution can usually be found.In practical engineering applications,it gives satisfactory precision.
基金financially supported by China National Funds for Distinguished Young Scientists(Grant No.52025112)the Key Projects of the National Natural Science Foundation of China(Grant No.52331011)。
文摘Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
基金financially supported by the National Natural Science Foundation of China(Grant No.52372356).
文摘To realize the low-resistance shape optimization design of amphibious robots,an efficient optimization design framework is proposed to improve the geometric deformation flexibility and optimization efficiency.In the proposed framework,the free-form deformation parametric model of the flat slender body is established and an analytical calculation method for the height constraints is derived.CFD method is introduced to carry out the high-precision resistance calculation and a constrained Kriging-based optimization method is built to improve the optimization efficiency by circularly infilling the new sample points which satisfying the constraints.Finally,the shape of an amphibious robot example is optimized to get the low-resistance shape and the results demonstrate that the presented optimization design framework has the advantages of simplicity,flexibility and high efficiency.
基金supported by JUST start-up fund for science research,the Jiangsu Natural Science Foundation(Grant No.BK20210885).
文摘According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.
基金supported by the National Natural Science Foundation of China(Grant No.52201323).
文摘In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.
基金financially supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.520LH052)the National Natural Science Foundation of China(Grant No.51909164).
文摘Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for industrial applications.In the present study,an indoor model test of the vertical hydraulic transport of particles was conducted.A noncontact optical method has been proposed to measure the local characteristics of the particles inside a vertical pipe,including the local concentration and particle velocity.The hydraulic gradient of ore transport was evaluated with various particle size distributions,particle densities,feeding concentrations and mixture flow velocities.During transport,the local concentration is larger than the feeding concentration,whereas the particle velocity is less than the mixture velocity.The qualitative effects of the local concentration and local fluid velocity on the particle velocity and slip velocity were investigated.The local fluid velocity contributes significantly to particle velocity and slip velocity,whereas the effect of the local concentration is marginal.A higher feeding concentration and mixture flow velocity result in an increased hydraulic gradient.The effect of the particle size gradation is slight,whereas the particle density plays a crucial role in the transport.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579122,51609109,and 51622902)the Natural Science Found of Jiangsu Province(Grant No.BK20160556)+1 种基金the University Natural Science Research Project of Jiangsu Province(Grant No.16kjb70003)the Key Lab Foundation for Advanced Manufacturing Technology of Jiangsu Province(Grant No.CJ1506)
文摘This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics(CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom(3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step.The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes(sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.
基金financial support from the National Natural Science Foundation of China (No. 52171077)。
文摘Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.Using high-resolution transmission electron microscopy and first principles calculations,the factors that affect corrosion mechanisms of the second phase in Al alloys at micro-scale and atomic-scale were examined,including the composition and structure of second phase,pH of the environment,stress and adsorption behavior of adsorbates(such as Cl^(−),H_(2)O,OH−and O_(2)^(−).
基金The State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences under contract No.LTO1915the National Natural Science Foundation of China under contract Nos 41630970,41876016,41676022 and 41521005the Instrument Developing Project of the CAS under contract No.YZ201432
文摘The evolution of energy, energy flux and modal structure of the internal tides (ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a ~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m^2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs. From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.
基金supported by the National Natural Science Foundation of China(Grant No.50609009)
文摘Corrosion and fatigue cracks are major threats to the structural integrity of aging offshore platforms. For the rational estimation of the safety levels of aging platforms, a global reliability assessment approach for aging offshore platforms with corrosion and fatigue cracks is presented in this paper. The base shear capacity is taken as the global ultimate strength of the offshore platforms. It is modeled as a random process that decreases with time in the presence of corrosion and fatigue crack propagation. And the corrosion and fatigue crack growth rates in the main members and key joints are modeled as random variables. A simulation method of the extreme wave loads which are applied to the structures of offshore platforms is proposed too. Furthermore, the statistics of global base shear capacity and extreme wave loads are obtained by Monte Carlo simulation method. On the basis of the limit state equation of global failure mode, the instantaneous reliability and time dependent reliability assessment methods are both presented in this paper. Finally the instantaneous reliability index and time dependent failure probability of a jacket platform are estimated with different ages in the demonstration example.
基金financially supported by the National Natural Science Foundation of China(Grant No.51221961)
文摘The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.
基金Supported by the Independent Innovation Foundation for National Defense of Huazhong University of Science and Technology(No.01-18-140019)
文摘The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.