In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmet...In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmetric LCs,cool starspots on the components were employed.It is suggested that their fill-out degrees are f=12.0%(LX Lyn) and f=26.3%(V0853 Aur).At the same time,we found that LX Lyn is a W-type eclipsing binary(EB) with an orbital inclination of i=84°.88 and a mass ratio of q=2.31.V0853 Aur is also a W-type CEB with a mass ratio of q=2.77 and an orbital inclination of i= 79°.26.Based on all available times of light minimum,their orbital period changes are studied by using the O-C method.The O-C diagram of LX Lyn reveals a cyclic oscillation with a period of about 14.84 yr and an amplitude of 0.0019 days,which can be explained by the light-travel time effect(LTTE) due to the presence of a third body with a minimum mass of0.06M_⊙.For V0853 Aur,it is discovered that the O-C diagram of the system also shows a cyclic oscillation with a period of 9.64 yr and an amplitude of 0.03365 days.The cyclic oscillation of V0853 Aur can be attributed to the LTTE by means of a third body with a mass no less than 3.77M_⊙.The third body may play an important role in the formation and evolution of these systems.展开更多
Dichloromethane(DCM)dehalogenase stands as a crucial enzyme implicated in the degradation of methylene chloride across diverse environmental and biological contexts.However,the unbinding pathways of ligands from DCM d...Dichloromethane(DCM)dehalogenase stands as a crucial enzyme implicated in the degradation of methylene chloride across diverse environmental and biological contexts.However,the unbinding pathways of ligands from DCM dehalogenase remain unexplored.In order to gain a deeper understanding of the binding sites and dissociation pathways of dichloromethane(DCM)and glutathione(GSH)from the DCM dehalogenase,random accelerated molecular dynamics(RAMD)simulations were performed,in which DCM and GSH were forced to leave the active site.The protein structure was predicted using Alphafold2,and the conformations of GSH and DCM in the binding pocket were predicted by docking.A long equilibrium simulation was conducted to validate the structure of the complex.The results show that GSH is most commonly observed in three main pathways,one of which is more important than the other two.In addition,DCM was observed to escape along a unique pathway.The key residues and protein helices of each pathway were identified.The results can provide a theoretical foundation for the subsequent dissociation mechanism of DCM dehalogenase.展开更多
We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population...We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.展开更多
We used the Five-hundred-meter Aperture Spherical radio Telescope(FAST)to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets,C/2020 F3(NEOWISE),C/2020 R4(ATLAS),C/2021 A1(Leona...We used the Five-hundred-meter Aperture Spherical radio Telescope(FAST)to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets,C/2020 F3(NEOWISE),C/2020 R4(ATLAS),C/2021 A1(Leonard),and 67P/Churyumov-Gerasimenko during or after their perihelion passages.Thousands of molecular transition lines fall in this low-frequency range,many attributed to complex organic or prebiotic molecules.We conducted a blind search for the possible molecular lines in this frequency range in those comets and could not identify clear signals of molecular emissions in the data.Although several molecules have been detected at high frequencies of greater than100 GHz in comets,our results confirm that it is challenging to detect molecular transitions in the L-band frequency ranges.The non-detection of L-band molecular lines in the cometary environment could rule out the possibility of unusually strong lines,which could be caused by the masers or non-LTE effects.Although the line strengths are predicted to be weak,for FAST,using the ultra-wide bandwidth receiver and improving the radio frequency interference environments would enhance the detectability of those molecular transitions at low frequencies in the future.展开更多
After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are recei...After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.展开更多
First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic prope...First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.展开更多
We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detecto...We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detector(QCD)structures.By configuring oblique and parallel excitation geometries,high signal-to-noise ratio PL spectra in near-to-far-infrared region are measured.With support from numerical calculations based on the k·p perturbation theory,the spectra is attributed to intraband and interband transitions of InGaAs/InAlAs QCD structures.Temperature evolution results show that the k-dependent transitions caused by longitudinal optical phonon-assisted scattering(Frohlich interaction)plays an important role in the ISBT.These results suggest that this infrared modulated-PL method has great potential in characterizing QCD devices and conducting performance diagnostics.展开更多
A scheme for storage of cold molecules in a hollow optical ring generated by a metasurface grating is proposed.The characteristics and intensity distribution related to the ring’s structural parameters and fabricatio...A scheme for storage of cold molecules in a hollow optical ring generated by a metasurface grating is proposed.The characteristics and intensity distribution related to the ring’s structural parameters and fabrication error tolerance are theoretically studied. The optical potential and dipole force required for the ring to trap magnesium monofluoride(MgF)molecules are also calculated. The dynamic behavior of MgF molecules in the storage ring is simulated by a Monte Carlo method, which shows that a metasurface-based optical storage ring can be used to trap molecules and is an interesting platform for research into ultracold quantum gases and their quantum-state manipulation.展开更多
The dipolar interactions are investigated through the asymmetric magneto-impedance in FINEMET/SiO_(2)/FePd composite ribbons.The interface between the hard(FePd layer)phase and soft(FINEMET ribbon)phase is coherent by...The dipolar interactions are investigated through the asymmetric magneto-impedance in FINEMET/SiO_(2)/FePd composite ribbons.The interface between the hard(FePd layer)phase and soft(FINEMET ribbon)phase is coherent by SiO_(2)layer in FINEMET/SiO_(2)/FePd composite ribbons,which effectively induces dipolar interactions.The contribution of dipolar interaction to the bias field(Hb)by asymmetrical giant magneto-impedance and magnetic properties is analyzed.The results show that Hb response decreases with the increase of the SiO_(2)layer thickness,indicating that the linear region near-zero field can be tuned by the thickness of SiO_(2)layer.These results allow the GMI ratio(58%)and characteristic frequency(500 kHz)to be optimized.The transverse and longitudinal magnetic domain structures of FINEMET ribbon and FePd film are confirmed,respectively.The composite ribbons with high GMI ratio and low frequency can be applied to linear magnetic sensors.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
This paper carries out first principles calculation of the structure, electronic and optical properties of BexZn1-xO alloys based on the density-functional theory for the compositions x = 0.0, 0.25, 0.5, 0.75, 1.0. Th...This paper carries out first principles calculation of the structure, electronic and optical properties of BexZn1-xO alloys based on the density-functional theory for the compositions x = 0.0, 0.25, 0.5, 0.75, 1.0. The lattice constants deviations of alloys obey Vegard's law well. The BexZn1-xO alloys have the direct band gap (Г-Г) character, and the bowing coefficients axe less than the available theoretical values. Moreover, it investigates in detail the optical properties (dielectric functions, absorption spectrum and refractive index) of these ternary mixed crystals. The obtained results agree well with the available theoretical and experimental values.展开更多
The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, a...The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.展开更多
We present an independent catalog(FRIIRGcat)of 45,241 Fanaroff–Riley TypeⅡ(FR-Ⅱ)radio galaxies compiled from the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters(FIRST)survey and employed the de...We present an independent catalog(FRIIRGcat)of 45,241 Fanaroff–Riley TypeⅡ(FR-Ⅱ)radio galaxies compiled from the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters(FIRST)survey and employed the deep learning method.Among them,optical and/or infrared counterparts are identified for 41,425 FR-Ⅱs.This catalog spans luminosities 2.63×10^(22)≤L_(rad)≤6.76×10^(29)W Hz^(-1)and redshifts up to z=5.01.The spectroscopic classification indicates that there are 1431 low-excitation radio galaxies and 260 high-excitation radio galaxies.Among the spectroscopically identified sources,black hole masses are estimated for 4837 FR-Is,which are in 10^(7.5)■M_(BH)■10^(9.5)M_(⊙).Interestingly,this catalog reveals a couple of giant radio galaxies(GRGs),which are already in the existing GRG catalog,confirming the efficiency of this FR-I catalog.Furthermore,284new GRGs are unveiled in this new FR-I sample;they have the largest projected sizes ranging from 701 to1209 kpc and are located at redshifts 0.31<z<2.42.Finally,we explore the distribution of the jet position angle and it shows that the faint Images of the FIRST images are significantly affected by the systematic effect(the observing beams).The method presented in this work is expected to be applicable to the radio sky surveys that are currently being conducted because they have finely refined telescope arrays.On the other hand,we are expecting that further new methods will be dedicated to solving this problem.展开更多
The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-...The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor.A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model.First,the parameter distributions of the time-resolved spectrum are given as follows:the low-energy spectral indexα~-0.72,high-energy spectral indexβ~2.42,the peak energy E_(p)~221.69 keV,and the energy flux F~7.49×10^(-6)erg cm^(-2)s^(-1).More than 80%of the bursts exhibit the hardest low-energy spectral indexα_(max),exceeding the synchrotron limit(-2/3).Second,the evolution patterns of a and E_(p)were statistically analyzed.The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of both E_(p)andα.The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs.Finally,we found a significant positive correlation between F and E_(p),with half of the samples exhibiting a positive correlation between F andα.We discussed the spectral evolution of different radiation models.The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process,including photo spheric radiation and synchrotron radiation.However,it may also involve only one radiation mechanism,but more complicated physical details need to be considered.展开更多
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The ...Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The variation characteristics of GWs during SSWs have always been an important issue.Using temperature data from January to March in 2014−2016,provided by the Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)mission,we have analyzed global GW activity at 15−40 km in the Northern Hemisphere during SSW events.During the SSWs that we studied,the stratospheric temperature rose in one or two longitudinal regions in the Northern Hemisphere;the areas affected extended to the east of 90°W.During these SSWs,the potential energy density(E_(p)of GWs expanded and covered a larger range of longitude and altitude,exhibiting an eastward and downward extension.The E_(p)usually increased,while partially filtered by the eastward zonal winds.When zonal winds weakened or turned westward,E_(p)began to strengthen.After SSWs,the E_(p)usually decreased.These observations can serve as a reference for analyzing the interaction mechanism between SSWs and GWs in future work.展开更多
Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has...Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.展开更多
Pulsar search is always the basis of pulsar navigation,gravitational wave detection and other research topics.Currently,the volume of pulsar candidates collected by the Five-hundred-meter Aperture Spherical radio Tele...Pulsar search is always the basis of pulsar navigation,gravitational wave detection and other research topics.Currently,the volume of pulsar candidates collected by the Five-hundred-meter Aperture Spherical radio Telescope(FAST)shows an explosive growth rate that has brought challenges for its pulsar candidate filtering system.Particularly,the multi-view heterogeneous data and class imbalance between true pulsars and non-pulsar candidates have negative effects on traditional single-modal supervised classification methods.In this study,a multi-modal and semi-supervised learning based on a pulsar candidate sifting algorithm is presented,which adopts a hybrid ensemble clustering scheme of density-based and partition-based methods combined with a feature-level fusion strategy for input data and a data partition strategy for parallelization.Experiments on both High Time Resolution Universe SurveyⅡ(HTRU2)and actual FAST observation data demonstrate that the proposed algorithm could excellently identify pulsars:On HTRU2,the precision and recall rates of its parallel mode reach0.981 and 0.988 respectively.On FAST data,those of its parallel mode reach 0.891 and 0.961,meanwhile,the running time also significantly decreases with the increment of parallel nodes within limits.Thus,we can conclude that our algorithm could be a feasible idea for large scale pulsar candidate sifting for FAST drift scan observation.展开更多
Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has b...Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.展开更多
First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium la...First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimented data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wave velocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than the experimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Sip states indicates a certain covalency of the Os-Si bonds.展开更多
基金partly supported by the Joint Research Fund in Astronomy (grant Nos. U1931101, 42364001) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS)the National Natural Science Foundation of China (NSFC, Grant No. 11933008)+3 种基金the Guizhou Provincial Science and Technology Foundation (grant Nos.[2020]1Y017, ZK[2022]322)the Foundation of Education Bureau of Guizhou Province,China (grant No. KY (2020) 003)partially supported by the Open Project Program of the CAS Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciencesthe TESS team for its support。
文摘In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmetric LCs,cool starspots on the components were employed.It is suggested that their fill-out degrees are f=12.0%(LX Lyn) and f=26.3%(V0853 Aur).At the same time,we found that LX Lyn is a W-type eclipsing binary(EB) with an orbital inclination of i=84°.88 and a mass ratio of q=2.31.V0853 Aur is also a W-type CEB with a mass ratio of q=2.77 and an orbital inclination of i= 79°.26.Based on all available times of light minimum,their orbital period changes are studied by using the O-C method.The O-C diagram of LX Lyn reveals a cyclic oscillation with a period of about 14.84 yr and an amplitude of 0.0019 days,which can be explained by the light-travel time effect(LTTE) due to the presence of a third body with a minimum mass of0.06M_⊙.For V0853 Aur,it is discovered that the O-C diagram of the system also shows a cyclic oscillation with a period of 9.64 yr and an amplitude of 0.03365 days.The cyclic oscillation of V0853 Aur can be attributed to the LTTE by means of a third body with a mass no less than 3.77M_⊙.The third body may play an important role in the formation and evolution of these systems.
基金National Natural Science Foundation of China(22073030)the Oriental Scholars of Shanghai Universities。
文摘Dichloromethane(DCM)dehalogenase stands as a crucial enzyme implicated in the degradation of methylene chloride across diverse environmental and biological contexts.However,the unbinding pathways of ligands from DCM dehalogenase remain unexplored.In order to gain a deeper understanding of the binding sites and dissociation pathways of dichloromethane(DCM)and glutathione(GSH)from the DCM dehalogenase,random accelerated molecular dynamics(RAMD)simulations were performed,in which DCM and GSH were forced to leave the active site.The protein structure was predicted using Alphafold2,and the conformations of GSH and DCM in the binding pocket were predicted by docking.A long equilibrium simulation was conducted to validate the structure of the complex.The results show that GSH is most commonly observed in three main pathways,one of which is more important than the other two.In addition,DCM was observed to escape along a unique pathway.The key residues and protein helices of each pathway were identified.The results can provide a theoretical foundation for the subsequent dissociation mechanism of DCM dehalogenase.
基金This work was supported by the National Natural Science Foundations of China(Grant Nos.12275033,61973317,and 12274470)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(Grant No.2022JJ10070)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ30582)the Scientific Research Fund of Hunan Provincial Education Department(Grant No.20A025).
文摘We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.
基金supported by a grant from the National Natural Science Foundation of China(NSFC)No.11988101by the NSFC grant Nos.11703047,11773041,U2031119,12173052,12173053,12373032,and 11963002+6 种基金support from the China Postdoctoral Science Foundation grant No.2023M733271the Foundation of Education Bureau of Guizhou Province,China(grant No.KY(2020)003)supported by the International Partnership Program of the Chinese Academy of Sciences,program No.114A11KYSB20210010the Youth Innovation Promotion Association of the Chinese Academy of Sciences(ID Nos.2023064,2018075,and Y2022027)the support from the National Key R&D Program of China grant Nos.2022YFC2205202 and 2020SKA0120100supported by the CAS“Light of West China”Programthe support by the NSFC grant No.12373026。
文摘We used the Five-hundred-meter Aperture Spherical radio Telescope(FAST)to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets,C/2020 F3(NEOWISE),C/2020 R4(ATLAS),C/2021 A1(Leonard),and 67P/Churyumov-Gerasimenko during or after their perihelion passages.Thousands of molecular transition lines fall in this low-frequency range,many attributed to complex organic or prebiotic molecules.We conducted a blind search for the possible molecular lines in this frequency range in those comets and could not identify clear signals of molecular emissions in the data.Although several molecules have been detected at high frequencies of greater than100 GHz in comets,our results confirm that it is challenging to detect molecular transitions in the L-band frequency ranges.The non-detection of L-band molecular lines in the cometary environment could rule out the possibility of unusually strong lines,which could be caused by the masers or non-LTE effects.Although the line strengths are predicted to be weak,for FAST,using the ultra-wide bandwidth receiver and improving the radio frequency interference environments would enhance the detectability of those molecular transitions at low frequencies in the future.
基金We thank the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)+1 种基金the National Natural Science Foundation of China(21961160720 and 52203217)the China Postdoctoral Science Foundation(2021M690805)for financial support.
文摘After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.
基金Project supported by the Construct Program of the Key Discipline in Hunan Province,ChinaAid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB2203400)the National Natural Science Foundation of China(Grant Nos.61974044 and 11974368)the Shanghai Committee of Science and Technology of China(Grant Nos.20142201000 and 21ZR1421500)。
文摘We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detector(QCD)structures.By configuring oblique and parallel excitation geometries,high signal-to-noise ratio PL spectra in near-to-far-infrared region are measured.With support from numerical calculations based on the k·p perturbation theory,the spectra is attributed to intraband and interband transitions of InGaAs/InAlAs QCD structures.Temperature evolution results show that the k-dependent transitions caused by longitudinal optical phonon-assisted scattering(Frohlich interaction)plays an important role in the ISBT.These results suggest that this infrared modulated-PL method has great potential in characterizing QCD devices and conducting performance diagnostics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12174115, 11974434, 91836103, and 11374100)the Natural Science Foundation of Guangdong Province, China (Grant No. 2020A1515011159)+1 种基金the Science and Technology Program of Guangzhou (Grant No. 202102080380)Shanghai Pujiang Program (Grant No. 20PJ1403400)。
文摘A scheme for storage of cold molecules in a hollow optical ring generated by a metasurface grating is proposed.The characteristics and intensity distribution related to the ring’s structural parameters and fabrication error tolerance are theoretically studied. The optical potential and dipole force required for the ring to trap magnesium monofluoride(MgF)molecules are also calculated. The dynamic behavior of MgF molecules in the storage ring is simulated by a Monte Carlo method, which shows that a metasurface-based optical storage ring can be used to trap molecules and is an interesting platform for research into ultracold quantum gases and their quantum-state manipulation.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022MF276)the Major Innovation Fund of Qilu University of Technology(Shandong Academy of Science),China(Grant No.2022JBZ02-02)+1 种基金the Fund from Shanghai Science and Technology Commission,China(Grant No.22142200900)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2019GXNSFAA245056).
文摘The dipolar interactions are investigated through the asymmetric magneto-impedance in FINEMET/SiO_(2)/FePd composite ribbons.The interface between the hard(FePd layer)phase and soft(FINEMET ribbon)phase is coherent by SiO_(2)layer in FINEMET/SiO_(2)/FePd composite ribbons,which effectively induces dipolar interactions.The contribution of dipolar interaction to the bias field(Hb)by asymmetrical giant magneto-impedance and magnetic properties is analyzed.The results show that Hb response decreases with the increase of the SiO_(2)layer thickness,indicating that the linear region near-zero field can be tuned by the thickness of SiO_(2)layer.These results allow the GMI ratio(58%)and characteristic frequency(500 kHz)to be optimized.The transverse and longitudinal magnetic domain structures of FINEMET ribbon and FePd film are confirmed,respectively.The composite ribbons with high GMI ratio and low frequency can be applied to linear magnetic sensors.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974139 and 10964002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20050610010)+1 种基金the Science-Technology Foundation of Guizhou Province of China (Grant Nos. [2009]2066,[2009]06 and [2010]2146)the Project of Aiding Elites’ Research Condition of Guizhou Province of China (Grant No. TZJF-2008-42)
文摘This paper carries out first principles calculation of the structure, electronic and optical properties of BexZn1-xO alloys based on the density-functional theory for the compositions x = 0.0, 0.25, 0.5, 0.75, 1.0. The lattice constants deviations of alloys obey Vegard's law well. The BexZn1-xO alloys have the direct band gap (Г-Г) character, and the bowing coefficients axe less than the available theoretical values. Moreover, it investigates in detail the optical properties (dielectric functions, absorption spectrum and refractive index) of these ternary mixed crystals. The obtained results agree well with the available theoretical and experimental values.
基金Supported by the National Natural Science Foundation of China under Grant No 11404180the Natural Science Foundation of Heilongjiang Province under Grant Nos F201335,A2015010,and A2015011the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province under Grant No LBH-Q14159
文摘The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.
基金supported by the National SKA Program of China(2022SKA0120101,2022SKA0130100,2022SKA 0130104)the National Natural Science Foundation of China(NSFC,grant No.12103013)+5 种基金the Foundation of Science and Technology of Guizhou Province(Nos.(2021)023)the Foundation of Guizhou Provincial Education Department(Nos.KY(2021)303,KY(2020)003,KY(2023)059)supported by the National Natural Science Foundation of China(NSFC,grant Nos.12103076 and 12233005)the National Key R&D Program of China(2020YFE0202100)the Shanghai Sailing Program(21YF1455300)the China Postdoctoral Science Foundation(2021M693267)。
文摘We present an independent catalog(FRIIRGcat)of 45,241 Fanaroff–Riley TypeⅡ(FR-Ⅱ)radio galaxies compiled from the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters(FIRST)survey and employed the deep learning method.Among them,optical and/or infrared counterparts are identified for 41,425 FR-Ⅱs.This catalog spans luminosities 2.63×10^(22)≤L_(rad)≤6.76×10^(29)W Hz^(-1)and redshifts up to z=5.01.The spectroscopic classification indicates that there are 1431 low-excitation radio galaxies and 260 high-excitation radio galaxies.Among the spectroscopically identified sources,black hole masses are estimated for 4837 FR-Is,which are in 10^(7.5)■M_(BH)■10^(9.5)M_(⊙).Interestingly,this catalog reveals a couple of giant radio galaxies(GRGs),which are already in the existing GRG catalog,confirming the efficiency of this FR-I catalog.Furthermore,284new GRGs are unveiled in this new FR-I sample;they have the largest projected sizes ranging from 701 to1209 kpc and are located at redshifts 0.31<z<2.42.Finally,we explore the distribution of the jet position angle and it shows that the faint Images of the FIRST images are significantly affected by the systematic effect(the observing beams).The method presented in this work is expected to be applicable to the radio sky surveys that are currently being conducted because they have finely refined telescope arrays.On the other hand,we are expecting that further new methods will be dedicated to solving this problem.
基金performed under the auspices of the Science and Technology Foundation of Guizhou Province(grant No.Qian Ke He Ji Chu ZK[2021]027)Major Science and Technology Program of Xinjiang Uygur Autonomous Region through No.2022A03013-1+1 种基金the National Key Research and Development Program of China(No.2022YFC2205202)the National Natural Science Foundation of China grants 12288102,12041304 and 11847102。
文摘The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor.A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model.First,the parameter distributions of the time-resolved spectrum are given as follows:the low-energy spectral indexα~-0.72,high-energy spectral indexβ~2.42,the peak energy E_(p)~221.69 keV,and the energy flux F~7.49×10^(-6)erg cm^(-2)s^(-1).More than 80%of the bursts exhibit the hardest low-energy spectral indexα_(max),exceeding the synchrotron limit(-2/3).Second,the evolution patterns of a and E_(p)were statistically analyzed.The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of both E_(p)andα.The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs.Finally,we found a significant positive correlation between F and E_(p),with half of the samples exhibiting a positive correlation between F andα.We discussed the spectral evolution of different radiation models.The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process,including photo spheric radiation and synchrotron radiation.However,it may also involve only one radiation mechanism,but more complicated physical details need to be considered.
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.
基金the National Science Foundation of Hunan Province,China(Grant No.2022JJ40471)the Research Foundation of the Education Bureau of Hunan Province,China(Grant No.22B0345)the Key Laboratory of Geospace Envi-ronment,Chinese Academy of Sciences,University of Science&Technology of China(Grant No.GE2023-01).
文摘Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The variation characteristics of GWs during SSWs have always been an important issue.Using temperature data from January to March in 2014−2016,provided by the Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)mission,we have analyzed global GW activity at 15−40 km in the Northern Hemisphere during SSW events.During the SSWs that we studied,the stratospheric temperature rose in one or two longitudinal regions in the Northern Hemisphere;the areas affected extended to the east of 90°W.During these SSWs,the potential energy density(E_(p)of GWs expanded and covered a larger range of longitude and altitude,exhibiting an eastward and downward extension.The E_(p)usually increased,while partially filtered by the eastward zonal winds.When zonal winds weakened or turned westward,E_(p)began to strengthen.After SSWs,the E_(p)usually decreased.These observations can serve as a reference for analyzing the interaction mechanism between SSWs and GWs in future work.
基金Project supported by the National Key Research and Development Program of China (Grant No.2020YFA0211400)the State Key Program of the National Natural Science Foundation of China (Grant No.11834008)+3 种基金the National Natural Science Foundation of China (Grant Nos.12174192 and 12204119)the Fund from the State Key Laboratory of Acoustics,Chinese Academy of Sciences (Grant No.SKLA202210)the Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences (Grant No.SSHJ-KFKT-1701)the Science and Technology Foundation of Guizhou Province,China (Grant No.ZK[2023]249)。
文摘Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.
基金supported by the National Key R&D Program of China(No.2022YFE0133700)the National Natural Science Foundation of China(NSFC,grant Nos.12273008,11963003,12273007 and 62062025)+4 种基金the National SKA Program of China(No.2020SKA0110300)the Guizhou Province Science and Technology Support Program(General Project)No.Qianhe Support[2023]General 333,Science and Technology Foundation of Guizhou Province(Key Program,No.[2019]1432)the Guizhou Provincial Science and Technology Projects(Nos.ZK[2022]143 and ZK[2022]304)the Cultivation project of Guizhou University(No.[2020]76)。
文摘Pulsar search is always the basis of pulsar navigation,gravitational wave detection and other research topics.Currently,the volume of pulsar candidates collected by the Five-hundred-meter Aperture Spherical radio Telescope(FAST)shows an explosive growth rate that has brought challenges for its pulsar candidate filtering system.Particularly,the multi-view heterogeneous data and class imbalance between true pulsars and non-pulsar candidates have negative effects on traditional single-modal supervised classification methods.In this study,a multi-modal and semi-supervised learning based on a pulsar candidate sifting algorithm is presented,which adopts a hybrid ensemble clustering scheme of density-based and partition-based methods combined with a feature-level fusion strategy for input data and a data partition strategy for parallelization.Experiments on both High Time Resolution Universe SurveyⅡ(HTRU2)and actual FAST observation data demonstrate that the proposed algorithm could excellently identify pulsars:On HTRU2,the precision and recall rates of its parallel mode reach0.981 and 0.988 respectively.On FAST data,those of its parallel mode reach 0.891 and 0.961,meanwhile,the running time also significantly decreases with the increment of parallel nodes within limits.Thus,we can conclude that our algorithm could be a feasible idea for large scale pulsar candidate sifting for FAST drift scan observation.
基金supported by the National Key R&D Program of China(2021YFA0718500)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)+1 种基金the National Natural Science Foundation of China(grant Nos.12173038 and U2038106)the National HEP Data Center(grant No.E029S2S1)。
文摘Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.
基金Supported by the National Natural Science Foundation of China under Grant No.10974139the Doctoral Program Foundation of Institution of Higher Education of China under Grant No.20050610010+1 种基金the Natural Science Foundation of the Education Bureau of Guizhou Province of China under Grant No.2005105the Governor's Foundation for Science and Education Elites of Guizhou Province under Grant No.QSZHZ2006(113)
文摘First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimented data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wave velocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than the experimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Sip states indicates a certain covalency of the Os-Si bonds.