Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa...Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).展开更多
Foam diversion can effectively solve the problem of uneven distribution of acid in layers of different permeabilities during matrix acidizing. Based on gas trapping theory and the mass conservation equation, mathemati...Foam diversion can effectively solve the problem of uneven distribution of acid in layers of different permeabilities during matrix acidizing. Based on gas trapping theory and the mass conservation equation, mathematical models were developed for foam-diverted acidizing, which can be achieved by a foam slug followed by acid injection or by continuous injection of foamed acid. The design method for foam-diverted acidizing was also given. The mathematical models were solved by a computer program. Computed results show that the total formation skin factor, wellhead pressure and bottomhole pressure increase with foam injection, but decrease with acid injection. Volume flow rate in a highpermeability layer decreases, while that in a low-permeability layer increases, thus diverting acid to the low-permeability layer from the high-permeability layer. Under the same formation conditions, for foamed acid treatment the operation was longer, and wellhead and bottomhole pressures are higher. Field application shows that foam slug can effectively block high permeability layers, and improve intake profile noticeably.展开更多
基金supported by the Fund of Innovation Research Group of National Natural Science Foundation of China (Grant NO.5052160450323001)Major Program of National Natural Science Foundation of China (Grant No.50536020)
文摘Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).
文摘Foam diversion can effectively solve the problem of uneven distribution of acid in layers of different permeabilities during matrix acidizing. Based on gas trapping theory and the mass conservation equation, mathematical models were developed for foam-diverted acidizing, which can be achieved by a foam slug followed by acid injection or by continuous injection of foamed acid. The design method for foam-diverted acidizing was also given. The mathematical models were solved by a computer program. Computed results show that the total formation skin factor, wellhead pressure and bottomhole pressure increase with foam injection, but decrease with acid injection. Volume flow rate in a highpermeability layer decreases, while that in a low-permeability layer increases, thus diverting acid to the low-permeability layer from the high-permeability layer. Under the same formation conditions, for foamed acid treatment the operation was longer, and wellhead and bottomhole pressures are higher. Field application shows that foam slug can effectively block high permeability layers, and improve intake profile noticeably.