期刊文献+
共找到17,564篇文章
< 1 2 250 >
每页显示 20 50 100
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:2
1
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 Low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Integrated Practice of Cultivating Innovative Ability and Ideological Education for Graduate Students of Materials Science Major
2
作者 Junjie Ni Yan Li 《Journal of Contemporary Educational Research》 2024年第5期247-253,共7页
Aiming at the problem of weak integration of innovation ability and ideological education of postgraduates in materials major,this paper explores postgraduates’cultivation work under the support of Liaocheng Universi... Aiming at the problem of weak integration of innovation ability and ideological education of postgraduates in materials major,this paper explores postgraduates’cultivation work under the support of Liaocheng University.It is found that the cultivation of the innovation ability of postgraduates in materials can be the realization path and sublimation carrier of ideological education,ideological education can provide spiritual support and methodological guidance for the former,and the organic integration of the two is feasible.Constructing the fit relationship between innovation ability and ideological education,institutionalizing tutor guidance,establishing tutor+counselor+professional teacher communication mechanism,and taking disciplinary competitions as a handhold can achieve the integration of innovation ability cultivation and ideological education of graduate students in materials major. 展开更多
关键词 Postgraduate education Innovation ability Ideological education Materials major
下载PDF
High-efficiency sodium storage of Co_(0.85)Se/WSe_(2) encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering 被引量:2
3
作者 Ya Ru Pei Hong Yu Zhou +5 位作者 Ming Zhao Jian Chen Li Xin Ge Wei Zhang Chun Cheng Yang Qing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期94-107,共14页
With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption... With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides. 展开更多
关键词 Co_(0.85)Se/WSe_(2)heterostructure density functional theory simulations N-doped carbon polyhedron Se vacancies sodium-ion batteries
下载PDF
Current and further trajectories in designing functional materials for solid oxide electrochemical cells:A review of other reviews 被引量:2
4
作者 Stanislav Baratov Elena Filonova +6 位作者 Anastasiya Ivanova Muhammad Bilal Hanif Muneeb Irshad Muhammad Zubair Khan Martin Motola Sajid Rauf Dmitry Medvedev 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期302-331,共30页
Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(ox... Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(oxygen-ionic or protonic,or n-type,or p-type electronic)or a combination thereof gener-ating distinct dual-conducting or even triple-conducting materials.These properties enable their use as diverse functional materials for solid oxide fuel cells,solid oxide electrolysis cells,permeable membranes,and gas sensors.The literature review shows that the field of solid oxide materials and related electro-chemical cells has a significant level of research engagement,with over 8,000 publications published since 2020.The manual analysis of such a large volume of material is challenging.However,by examining the review articles,it is possible to identify key patterns,recent achievements,prospects,and remaining obstacles.To perform such an analysis,the present article provides,for the first time,a comprehensive summary of previous review publications that have been published since 2020,with a special focus on solid oxide materials and electrochemical systems.Thus,this study provides an important reference for researchers specializing in the fields of solid state ionics,high-temperature electrochemistry,and energyconversiontechnologies. 展开更多
关键词 SOFCS SOECs PCFCS ELECTROCHEMISTRY Energy conversion Hydrogen energy Carbon neutrality
下载PDF
Properties and Characteristics of Regolith-Based Materials for Extraterrestrial Construction
5
作者 Cheng Zhou Yuyue Gao +4 位作者 Yan Zhou Wei She Yusheng Shi Lieyun Ding Changwen Miao 《Engineering》 SCIE EI CAS CSCD 2024年第6期159-181,共23页
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it... The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments. 展开更多
关键词 Extraterrestrial construction Characterization Mechanical property Thermal property Optical property Radiation-shielding
下载PDF
Bending Strength of Glass Materials under Strong Dynamic Impact and Its Strain Rate Effects
6
作者 LIU Xiaogen QI Shuang +2 位作者 WEI Shaoshan WAN Detian JIN Chunxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1358-1364,共7页
Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif... Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading. 展开更多
关键词 glass materials strong dynamic impact bending strength strain rate effect dynamic enhancement factor
原文传递
Effect of the Retarder on Initial Hydration and Mechanical Properties of the"one-step"Alkaliactivated Composite Cementitious Materials
7
作者 DING Rui HE Yue +3 位作者 LI Xingchen LI Han TIAN Hao WANG Hongen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1199-1213,共15页
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a... This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM. 展开更多
关键词 "one-step"alkali-activated composite cementitious materials solid activator hydration mechanism RETARDER retarding mechanism
原文传递
Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries
8
作者 Yunfei Song Laiying Jing +3 位作者 Rutian Wang Jiaxi Cui Mei Li Yunqiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期599-609,I0013,共12页
Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high ... Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs. 展开更多
关键词 Aqueous zinc ion batteries Vanadium trioxide Oxygen vacancy Structure evolution Phase optimization
下载PDF
Hybrid HMX multi-level assembled under the constraint of 2D materials with efficiently reduced sensitivity and optimized thermal stability
9
作者 Xiaomin Song Longjin Huang +3 位作者 Rufang Peng Qi Huang Jinjiang Xu Jie Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期123-132,共10页
The interfacial interaction between HMX molecules and coating materials is the key to the safety performance of explosives and has received extensive attention.However,screening suitable coating agents to enhance the ... The interfacial interaction between HMX molecules and coating materials is the key to the safety performance of explosives and has received extensive attention.However,screening suitable coating agents to enhance the interfacial effect to obtain high-energy and low-sensitivity explosives has long been a major challenge.In this work,HMX-PEI/rGO/g-C_(3)N_(4)(HPrGC)composites were innovatively prepared by a multi-level coating strategy of two-dimensional graphite rGO and g-C_(3)N_(4).The g-C_(3)N_(4) used for desensitization has a richπ-conjugated system and shows outstanding ability in reducing friction sensitivity.The hierarchical structure of HPrGC formed by electrostatic self-assembly andπ-πstacking can effectively dissipate energy accumulation under heat and mechanical stimulation through structural evolution,thus exhibiting a prominent synergistic desensitization effect on HMX.The results show that rGO/gC_(3)N_(4) coating has no effect on the crystal structure and chemical structure of HMX.More importantly,the perfect combination of g-C_(3)N_(4) and rGO endows HPrGC with enhanced thermal stability and ideal mechanical sensitivity(IS:21 J,FS:216 N).Obviously,the new fabrication of HPrGC enriches the variety of desensitizer materials and helps to deepen the understanding of the interaction between explosives and coatings. 展开更多
关键词 HMX-PEI/rGO/g-C_(3)N_(4) Electrostatic self-assembly π-πstacking Synergistic desensitization
下载PDF
Application of machine learning in perovskite materials and devices:A review
10
作者 Ming Chen Zhenhua Yin +6 位作者 Zhicheng Shan Xiaokai Zheng Lei Liu Zhonghua Dai Jun Zhang Shengzhong(Frank)Liu Zhuo Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期254-272,共19页
Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for m... Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices. 展开更多
关键词 Machine learning PEROVSKITE Materials design Bandgap engineering Stability Crystal structure
下载PDF
Paraelectric Doping Simultaneously Improves the Field Frequency Adaptability and Dielectric Properties of Ferroelectric Materials:A Phase-Field Study
11
作者 Zhi Wang Jinming Cao +1 位作者 Zhonglei Liu Yuhong Zhao 《Computers, Materials & Continua》 SCIE EI 2024年第10期213-228,共16页
Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking ... Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking K0.48Na0.52NbO3(KNN)as an example,it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods.The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency,the maximum polarization disappeared at high frequencies,and the hysteresis loop became elliptical.In order to further study the abnormal changes of hysteresis loops of ferroelectrics under high electric field frequency,we analyzed the hysteresis loop and dielectric response of solid solution 0.1SrTiO_(3)-0.9K_(0.48)Na_(0.52)NbO_(3).It was found that the doped hysteresis loop maintained its shape at higher frequency and the dielectric constant increased.This kind of doping has a higher field frequency adaptability,which has a key guiding role in improving the dielectric properties of ferroelectric thin films and expanding the frequency application range of ferroelectric nano memory。 展开更多
关键词 Ferroelectric ceramics dielectric properties electric field frequency DOPING phase field method
下载PDF
Surface engineering of P2-type cathode material targeting long-cycling and high-rate sodium-ion batteries
12
作者 Jun Xiao Yang Xiao +11 位作者 Shijian Wang Zefu Huang Jiayi Li Cheng Gong Guilai Zhang Bing Sun Hong Gao Huiqiao Li Xin Guo Yong Wang Hao Liu Guoxiu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期444-452,I0009,共10页
The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate per... The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode. 展开更多
关键词 Layered metal oxides Sodium-ion batteries P2-type structure Surface engineering
下载PDF
Scattered Co-anchored MoS_(2)synergistically boosting photothermal capture and storage of phase change materials
13
作者 Yang Li Panpan Liu +3 位作者 Yan Gao Yuhao Feng Peicheng Li Xiao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期208-215,I0005,共9页
Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles ... Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization. 展开更多
关键词 Phase change materials Photothermal conversion Thermal energy storage
下载PDF
Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting
14
作者 Yan Li Jie Han +5 位作者 Weiwei Bao Junjun Zhang Taotao Ai Mameng Yang Chunming Yang Pengfei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期590-599,I0013,共11页
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e... Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition. 展开更多
关键词 Surface reconstruction Bimetallic hydroxides Ag nanoparticle Operando Raman Overall water splitting
下载PDF
Research progress on electronic and active site engineering of cobalt‐based electrocatalysts for oxygen evolution reaction
15
作者 Chuansheng He Linlin Yang +4 位作者 Jia Wang Tingting Wang Jian Ju Yizhong Lu Wei Chen 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期134-165,共32页
Electrocatalytic water splitting has been identified as a potential candidate for producing clean hydrogen energy with zero carbon emission.However,the sluggish kinetics of oxygen evolution reaction on the anode side ... Electrocatalytic water splitting has been identified as a potential candidate for producing clean hydrogen energy with zero carbon emission.However,the sluggish kinetics of oxygen evolution reaction on the anode side of the watersplitting device significantly hinders its practical applications.Generally,the efficiency of oxygen evolution processes depends greatly on the availability of cost‐effective catalysts with high activity and selectivity.In recent years,extensive theoretical and experimental studies have demonstrated that cobalt(Co)‐based nanomaterials,especially low‐dimensional Co‐based nanomaterials with a huge specific surface area and abundant unsaturated active sites,have emerged as versatile electrocatalysts for oxygen evolution reactions,and thus,great progress has been made in the rational design and synthesis of Co‐based nanomaterials for electrocatalytic oxygen evolution reactions.Considering the remarkable progress in this area,in this timely review,we highlight the most recent developments in Co‐based nanomaterials relating to their dimensional control,defect regulation(conductivity),electronic structure regulation,and so forth.Furthermore,a brief conclusion about recent progress achieved in oxygen evolution on Co‐based nanomaterials,as well as an outlook on future research challenges,is given. 展开更多
关键词 Co‐based nanomaterial dimension regulation electronic structure and active site oxygen evolution reaction
下载PDF
Modification,application and expansion of electrode materials based on cobalt telluride
16
作者 Huilin Fan Yao Dai +7 位作者 Xiaoyun Xue Runguo Zheng Yuan Wang Hamidreza Arandiyan Zhiyuan Wang Zongping Shao Hongyu Sun Yanguo Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期710-737,I0015,共29页
Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overa... Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overall performance of rechargeable batteries heavily depends on their electrode materials.Transition metal tellurides have recently gained significant attention due to their high electrical conductivity and density.Cobalt telluride has received the most extensive research due to its catalytic activity,unique magnetic properties,and diverse composition and crystal structure.Nevertheless,its limited conductivity and significant volume variation contribute to electrode structural deterioration and rapid capacity decline.This review comprehensively summarizes recent advances in rational design and synthesis of modified cobalt telluride-based electrodes,encompassing defect engineering(Te vacancies,cation vacancies,heterointerfaces,and homogeneous interfaces)and composite engineering(derived carbon from precursors,carbon fibers,Mxene,graphene nanosheets,etc.).Particularly,the intricate evolution mechanisms of the conversion reaction process during cycling are elucidated.Furthermore,these modified strategies applied to other transitional metal tellurides,such as iron telluride,nickel telluride,zinc telluride,copper telluride,molybdenum telluride,etc.,are also thoroughly summarized.Additionally,their application extends to emerging aqueous zinc-ion batteries.Finally,potential challenges and prospects are discussed to further propel the development of transition metal tellurides electrode materials for next-generation rechargeable batteries. 展开更多
关键词 Rechargeable batteries Transition metal tellurides Cobalt telluride Defect engineering Composite engineering
下载PDF
The design and engineering strategies of metal tellurides for advanced metal-ion batteries
17
作者 Wenmiao Zhao Xiaoyuan Shi +3 位作者 Bo Liu Hiroshi Ueno Ting Deng Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期579-598,I0013,共21页
Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite ne... Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost. 展开更多
关键词 Metal tellurides Metal-ion battery Energy storage mechanism Material design and engineering
下载PDF
Towards green asphalt materials with lower emission of volatile organic compounds: A review on the release characteristics and its emission reduction additives
18
作者 Xiwen Chang Feng Wang +2 位作者 Rui Wu Chen Wang Yue Xiao 《Journal of Road Engineering》 2024年第3期292-317,共26页
Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinflu... Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward. 展开更多
关键词 Asphalt VOCs Volatile organic compounds Green asphalt materials Reduction efficiency Hazardous emission
下载PDF
Preparation and Performance Study of Cementitious Capillary Crystalline Waterproof Materials
19
作者 Hui Li Yu Liu Gaoshang Zhang 《Journal of Architectural Research and Development》 2024年第3期42-52,共11页
Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the pro... Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW. 展开更多
关键词 Cementitious penetration crystalline waterproof material IMPERMEABILITY Mechanism analysis Optimization design
下载PDF
Development of Integrated Computational Materials Engineering(ICME)Model for Mg Alloy Design and Process Optimization
20
作者 Hui Su Zhifei Yan +8 位作者 Yingchun Tian Chengpeng Xue Shuo Wang Guangyuan Tian Xinghai Yang Quan Li Xuelong Wu Zhongyao Li Junsheng Wang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期422-442,共21页
Integrated computational materials engineering(ICME)has emerged to be one of the most powerful materials genome engineering(MGE)approaches in designing new materials and manufacturing processes in recent years.It has ... Integrated computational materials engineering(ICME)has emerged to be one of the most powerful materials genome engineering(MGE)approaches in designing new materials and manufacturing processes in recent years.It has successfully deployed many new products for the electronic,automotive,and aerospace industries.This paper reviews the current status of research on first principles in the design of high-strength Mg alloys,discusses the application of crystal plasticity finite element models to the microscale slip,twinning,microstructure morphology,texture evolution,and macroscopic forming of Mg alloys,and introduces the research progress of crystal plasticity finite element models and phase field models,meta cellular automata models and first principles coupled models respectively,around the need for multi-scale coupled simulations of Mg alloys.The key technology obstacles of integrating the first principles,crystal plasticity finite element,and microstructure models for Mg alloys have been solved.This paper can provide a reference for the design of new Mg alloy compositions and the development of high-performance Mg alloys. 展开更多
关键词 FIRST-PRINCIPLES crystal plasticity finite elements MICROSTRUCTURE Mg alloys
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部