期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions
1
作者 Xiaoyang SU Tong HU +3 位作者 Wei ZHANG Houjun KANG Yunyue CONG Quan YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期983-1000,共18页
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th... Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM. 展开更多
关键词 transfer matrix method(TMM) free vibration forced vibration functionally graded material(FGM) stepped beam
下载PDF
Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm
2
作者 Guilin Wu Shenghua Huang +7 位作者 Tingting Liu Zhuoni Yang Yuesong Wu Guihong Wei Peng Yu Qilin Zhang Jun Feng Bo Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2709-2725,共17页
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica... Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation. 展开更多
关键词 Finite element method 3D printing polymer esophageal stent artificial neural network
下载PDF
基于分叉传递矩阵法的多跨连续刚构桥桥墩有效长度系数
3
作者 康厚军 郭忠 +2 位作者 张晓宇 苏潇阳 丛云跃 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第2期542-557,共16页
桥墩的有效长度系数对桥墩的稳定性和强度十分重要。为解决桥墩的稳定性问题,本文建立了一种便于采用传递矩阵法求解的新颖力学模型,并基于该方法计算了多跨连续刚构桥的有效长度系数。首先,建立n跨刚构桥的一般力学模型,并利用传递矩... 桥墩的有效长度系数对桥墩的稳定性和强度十分重要。为解决桥墩的稳定性问题,本文建立了一种便于采用传递矩阵法求解的新颖力学模型,并基于该方法计算了多跨连续刚构桥的有效长度系数。首先,建立n跨刚构桥的一般力学模型,并利用传递矩阵法推导了其在考虑自重荷载情况下的平面内稳定特征方程,进而求得弹性屈曲载荷和有效长度系数,并将其与有限元法得到的结果进行对比,从而验证所提理论和方法的正确性。其次,研究了用碳纤维增强聚合物和超高性能混凝土加固桥墩时,桥墩有效长度系数的变化规律。最后,探讨了边跨与中跨之比、桥面梁刚度以及桥墩刚度对桥墩有效长度系数的影响。结果表明,增强整体结构刚度比增强局部刚度对提高稳定性更有效,桥梁边跨和中跨跨度对有效长度系数的影响较大。同时,还观察到碳纤维增强聚合物加固高度改变时,桥墩有效长度系数变化曲线产生了独特的双峰效应。 展开更多
关键词 有效长度系数 面内稳定性 桥墩 传递矩阵法 刚构桥
下载PDF
On internal resonance analysis of a double-cable-stayed shallowarch model with elastic supports at both ends 被引量:1
4
作者 Xiaoyang Su Houjun Kang +1 位作者 Tieding Guo Guirong Yan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第6期182-199,I0004,共19页
In previous research on the nonlinear dynamics of cable-stayed bridges,boundary conditions were not properly modeled in the modeling.In order to obtain the nonlinear dynamics of cable-stayed bridges more accurately,a ... In previous research on the nonlinear dynamics of cable-stayed bridges,boundary conditions were not properly modeled in the modeling.In order to obtain the nonlinear dynamics of cable-stayed bridges more accurately,a double-cable-stayed shallow-arch model with elastic supports at both ends and the initial configuration of bridge deck included in the modeling is developed in this study.The in-plane eigenvalue problems of the model are solved by dividing the shallow arch(SA)into three partitions according to the number of cables and the piecewise functions are taken as trial functions of the SA.Then,the in-plane one-toone-to-one internal resonance among the global mode and the local modes(two cables’modes)is investigated when external primary resonance occurs.The ordinary differential equations(ODEs)are obtained by Galerkin’s method and solved by the method of multiple time scales.The stable equilibrium solutions of modulation equations are obtained by using the NewtonRaphson method.In addition,the frequency-/force-response curves under different vertical stiffness are provided to study the nonlinear dynamic behaviors of the elastically supported model.To validate the theoretical analyses,the Runge-Kutta method is applied to obtain the numerical solutions.Finally,some interesting conclusions are drawn. 展开更多
关键词 Cable-stayed bridge Internal resonance Vertical elastic support Eigenvalue Nonlinear vibration
原文传递
Energy transfer between components of a cable stayed beam model under the concentrated excitation:1:2 modal resonance
5
作者 Yunyue Cong Houjun Kang +1 位作者 Tieding Guo Xiaoyang Su 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第7期177-191,I0004,共16页
The present study aims to investigate the dynamic behaviors and energy transfer between components of a cable stayed beam structure subjected to a concentrated load,in which the primary resonance of the beam and one-t... The present study aims to investigate the dynamic behaviors and energy transfer between components of a cable stayed beam structure subjected to a concentrated load,in which the primary resonance of the beam and one-to-two internal resonance between modes of the beam and the cable occur.Galerkin discretization and multiple time scales method are applied to derive the modulation equations of the system governing the amplitude and phase.Two sags of span ratios are defined to modulate the internal resonance.Frequency response,amplitude response,phase diagram,Poincare map,and time history curves are calculated and used to investigate the modal resonance dynamics.The results demonstrate that the beam and the cable have two resonant peaks in frequency responses,where the beam always shows hardening spring property and the cable may present hardening and softening spring properties affected by sag to span ratio.The system is prone to complex dynamic behavior with the small amplitude excitation in the primary resonance region. 展开更多
关键词 Cable-stayed beam Concentrated excitation Nonlinear dynamics Frequency response Amplitude response
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部