Glycogen storage disease type Ia(GSD-Ia)is an autosomal recessive metabolic disorder caused by a deficiency in glucose-6-phosphatase-α(G6Pase-αor G6PC)that is expressed primarily in the liver,kidney,and intestine.G6...Glycogen storage disease type Ia(GSD-Ia)is an autosomal recessive metabolic disorder caused by a deficiency in glucose-6-phosphatase-α(G6Pase-αor G6PC)that is expressed primarily in the liver,kidney,and intestine.G6Pase-αcatalyzes the hydrolysis of glucose-6-phosphate(G6P)to glucose and phosphate in the terminal step of gluconeogenesis and glycogenolysis,and is a key enzyme for endogenous glucose production.The active site of G6Pase-αis inside the endoplasmic reticulum(ER)lumen.For catalysis,the substrate G6P must be translocated from the cytoplasm into the ER lumen by a G6P transporter(G6PT).The functional coupling of G6Pase-αand G6PT maintains interprandial glucose homeostasis.Dietary therapies for GSD-Ia are available,but cannot prevent the long-term complication of hepatocellular adenoma that may undergo malignant transformation to hepatocellular carcinoma.Animal models of GSD-Ia are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches,including gene therapy.展开更多
基金This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development,National Institutes of Health(HD000912-38).
文摘Glycogen storage disease type Ia(GSD-Ia)is an autosomal recessive metabolic disorder caused by a deficiency in glucose-6-phosphatase-α(G6Pase-αor G6PC)that is expressed primarily in the liver,kidney,and intestine.G6Pase-αcatalyzes the hydrolysis of glucose-6-phosphate(G6P)to glucose and phosphate in the terminal step of gluconeogenesis and glycogenolysis,and is a key enzyme for endogenous glucose production.The active site of G6Pase-αis inside the endoplasmic reticulum(ER)lumen.For catalysis,the substrate G6P must be translocated from the cytoplasm into the ER lumen by a G6P transporter(G6PT).The functional coupling of G6Pase-αand G6PT maintains interprandial glucose homeostasis.Dietary therapies for GSD-Ia are available,but cannot prevent the long-term complication of hepatocellular adenoma that may undergo malignant transformation to hepatocellular carcinoma.Animal models of GSD-Ia are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches,including gene therapy.