期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Top-down Method of Extraction Entity Relationship Triples and Obtaining Annotated Data
1
作者 Zhiqiang Hu Zheng Ma +6 位作者 Jun Shi Zhipeng Li Xun Shao Yangzhao Yang Yong Liao Zhenyuan Gao Jie Zhang 《Journal of Quantum Computing》 2022年第1期13-22,共10页
The extraction of entity relationship triples is very important to build a knowledge graph(KG),meanwhile,various entity relationship extraction algorithms are mostly based on data-driven,especially for the current pop... The extraction of entity relationship triples is very important to build a knowledge graph(KG),meanwhile,various entity relationship extraction algorithms are mostly based on data-driven,especially for the current popular deep learning algorithms.Therefore,obtaining a large number of accurate triples is the key to build a good KG as well as train a good entity relationship extraction algorithm.Because of business requirements,this KG’s application field is determined and the experts’opinions also must be satisfied.Considering these factors we adopt the top-down method which refers to determining the data schema firstly,then filling the specific data according to the schema.The design of data schema is the top-level design of KG,and determining the data schema according to the characteristics of KG is equivalent to determining the scope of data’s collection and the mode of data’s organization.This method is generally suitable for the construction of domain KG.This article proposes a fast and efficient method to extract the topdown type KG’s triples in social media with the help of structured data in the information box on the right side of the related encyclopedia webpage.At the same time,based on the obtained triples,a data labeling method is proposed to obtain sufficiently high-quality training data,using in various Natural Language Processing(NLP)information extraction algorithms’training. 展开更多
关键词 Entity relationship triples knowledge graph TOP-DOWN social media data labeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部