期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Regulating the inner Helmholtz plane structure at the electrolyte-electrode interface for highly reversible aqueous Zn batteries
1
作者 Jianghe Liu Sanlue Hu +6 位作者 Hexin Guo Guobin Zhang Wen Liu Jianwei Zhao Shenhua Song Cuiping Han Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期57-67,I0002,共12页
The development of aqueous Zn batteries is limited by parasitic water reactions,corrosion,and dendrite growth.To address these challenges,an inner Helmholtz plane(IHP)regulation method is proposed by employing low-cos... The development of aqueous Zn batteries is limited by parasitic water reactions,corrosion,and dendrite growth.To address these challenges,an inner Helmholtz plane(IHP)regulation method is proposed by employing low-cost,non-toxic maltitol as the electrolyte additive.The preferential adsorption behavior of maltitol can expel the water from the inner Helmholtz plane,and thus hinder the immediate contact between Zn metal and H_(2)O.Meanwhile,strong interaction between maltitol and H_(2)O molecules can restrain the activity of H_(2)O.Besides,the"IHP adsorption effect"along with the low LUMO energy level of maltitol-CF_(3)SO_(3)^(-)can promote the in-situ formation of an organic-inorganic complex solid electrolyte interface(SEI)layer.As a result,the hydrogen/oxygen evolution side reaction,corrosion,and dendrites issues are effectively suppressed,thereby leading to highly reversible and dendrite-free Zn plating/stripping.The Zn‖I_(2)battery with hybrid electrolytes also demonstrates high electrochemical performance and ultralong cycling stability,showing a capacity retention of 75%over 20000 charge-discharge cycles at a large current density of 5 A g^(-1).In addition,the capacity of the device has almost no obvious decay over20000 cycles even at-30℃.This work offers a successful electrolyte regulation strategy via the IHP adsorption effect to design electrolytes for high-performance rechargeable Zn-ion batteries. 展开更多
关键词 Inner Helmholtz plane Adsorption effect Dendrite suppression SEI layer Zn||I_(2)battery
下载PDF
Engineering Cu_(2)O/Cu/N-C interface to induce directional migration of charge for driving photocatalytic homo-coupling of terminal alkynes
2
作者 Xiaoqin Yan Tianyi Xu +8 位作者 Wenwen Zhan Yang Yang Yang Yu Jianjian Yi Xiaoxiao He Lei Yang Jianwei Zhao Liming Sun Xiguang Han 《Nano Research》 SCIE EI CSCD 2024年第8期6895-6902,共8页
The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to ... The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to form key intermediates with reactant molecules.The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu_(2)O/Cu(Cu_(2)O/Cu/N-C)with a Cu_(2)O/dual electron acceptor interface using etched HKUST-1 as the precursor.A series of theoretical and experimental studies have demonstrated that the Cu_(2)O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs,but also facilitates the formation of the key intermediate[Cu_(2)O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges.As a result,the homo-coupling reaction can be effectively facilitated.The primary reason for the functional role of Cu_(2)O/Cu/N-C interface lies in the downward bending of energy band from Cu_(2)O to N-doped C layers,induced by the different work functions of Cu_(2)O,Cu and N-doped C layers.Consequently,Cu_(2)O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere.The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications. 展开更多
关键词 photocatalysis homo-coupling of terminal alkynes directional migration of charges heterojunction interface Cu_(2)O carbon coated
原文传递
Chiral induction and Sb3+doping in indium halides to trigger second harmonic generation and circularly polarized luminescence
3
作者 Yongjing Deng Feiyang Li +5 位作者 Zijian Zhou Mengzhu Wang Yongkang Zhu Jianwei Zhao Shujuan Liu Qiang Zhao 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期503-507,共5页
Recently,organic-inorganic hybrid metal halides(HMHs)have attracted extensive attention as promis-ing multifunctional materials by virtue of their structural diversity and tunable photophysical properties.However,it r... Recently,organic-inorganic hybrid metal halides(HMHs)have attracted extensive attention as promis-ing multifunctional materials by virtue of their structural diversity and tunable photophysical properties.However,it remains a challenge to design HMHs with specific functions on demand.Herein,by introduc-ing R/S-methylbenzylamine(R/S-MBA)and doping Sb^(3+),we have achieved both second harmonic gen-eration(SHG)and circularly polarized luminescence(CPL)properties in lead-free indium halides.The introduction of chiral organic cations can break the symmetry and induce the indium halides to crys-tallize in the chiral space group.The Sb^(3+)with ns2 electronic configuration can serve as the dopants to promote the formation of self-trapped excitons,so as to activate highly efficient luminescence.As a re-sult,the as-prepared Sb3+doped(R/S-MBA)3 InCl6 show not only SHG responses but also CPL signals with luminescence dissymmetry factor of−5.3×10^(−3) and 4.7×10^(−3).This work provides a new inspiration for the exploitation of chiral multifunctional materials. 展开更多
关键词 Hybrid metal halides Self-trapped excitons Chiral induction Second-harmonic generation Circularly polarized luminescence
原文传递
Au nanorods decorated TiO_(2)nanobelts with enhanced full solar spectrum photocatalytic antibacterial activity and the sterilization file cabinet application 被引量:9
4
作者 Yingying Qin Yichen Guo +4 位作者 Zhangqian Liang Yanjun Xue Xiaoli Zhang Lei Yang Jian Tian 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第4期1523-1526,共4页
TiO_(2)photocatalysts have been widely studied and applied for removing bacteria,but its antibacterial efficiency is limited to the ultraviolet(UV)range of the solar spectrum.In this work,we use the gold(Au)nanorods t... TiO_(2)photocatalysts have been widely studied and applied for removing bacteria,but its antibacterial efficiency is limited to the ultraviolet(UV)range of the solar spectrum.In this work,we use the gold(Au)nanorods to enhance the visible and near-infrared(NIR)light absorption of TiO_(2)NBs,a typical UV light photocatalyst,thus the enhancement of its full solar spectrum(UV,visible and NIR)photocatalytic antibacterial properties is achieved.Preliminary surface plasmon resonance(SPR)enhancement photocatalytic antibacterial mechanism is suggested.On one hand,transverse and longitudinal SPR of Au NRs is beneficial for visible and NIR light utilization.On the other hand,Au NRs combined with TiO_(2)NBs to form the heterostructure,which can improve the photogenerated carrier separation and direct electron transfer increases the hot electron concentration while Au NRs as the electron channel can well restrain charge recombination.finally produces the high yield of radical oxygen species and exhibits a superior antibacterial efficiency.Furthermore,we design a sterilization file cabinet with Au NR/TiO_(2)NB heterostructures as the photocatalytic coating plates.Our study reveals that Au NR/TiO_(2)NB heterostructure is a potential candidate for sterilization of bacteria and archives protection. 展开更多
关键词 Au nanorods TiO_(2)nanobelts Photocatalytic antibacterial activity Surface plasmon resonance Sterilization file cabinet
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部