Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary ...Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater.展开更多
Cement density monitoring plays a vital role in evaluating the quality of cementing projects,which is of great significance to the development of oil and gas.However,the presence of inhomogeneous cement distribution a...Cement density monitoring plays a vital role in evaluating the quality of cementing projects,which is of great significance to the development of oil and gas.However,the presence of inhomogeneous cement distribution and casing eccentricity in horizontal wells often complicates the accurate evaluation of cement azimuthal density.In this regard,this paper proposes an algorithm to calculate the cement azimuthal density in horizontal wells using a multi-detector gamma-ray detection system.The spatial dynamic response functions are simulated to obtain the influence of cement density on gamma-ray counts by the perturbation theory,and the contribution of cement density in six sectors to the gamma-ray recorded by different detectors is obtained by integrating the spatial dynamic response functions.Combined with the relationship between gamma-ray counts and cement density,a multi-parameter calculation equation system is established,and the regularized Newton iteration method is employed to invert casing eccentricity and cement azimuthal density.This approach ensures the stability of the inversion process while simultaneously achieving an accuracy of 0.05 g/cm^(3) for the cement azimuthal density.This accuracy level is ten times higher compared to density accuracy calculated using calibration equations.Overall,this algorithm enhances the accuracy of cement azimuthal density evaluation,provides valuable technical support for the monitoring of cement azimuthal density in the oil and gas industry.展开更多
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie...To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods.展开更多
The maximum distance at which an electromagnetic(EM)logging while drilling(LWD)tool detects an approaching boundary is defined as the depth of detection(DOD).Ultra-deep detection capability of the transient multicompo...The maximum distance at which an electromagnetic(EM)logging while drilling(LWD)tool detects an approaching boundary is defined as the depth of detection(DOD).Ultra-deep detection capability of the transient multicomponent EM logging measurement is investigated here.First,we adopt sine and cosine transform to calculate the transient multicomponent responses.Compared to the cosine transform,sine transform is more accurate in solving late-time responses.Then,a time-domain geosignal is introduced to sense the boundary.Results show that DOD of this transient EM measurement can be up to tens of meters,including directionally sensitivity.Additionally,by studying the decay characteristics of different components with time,cross component is confirmed to decay much faster than the coaxial/coplanar components in the formation coordinate system.A pseudo-inversion is thereby proposed to determine the dip angle of anisotropic stratified formation.Theoretical simulation results indicate that this algebraic method can determine the true dip at some particular moments.It is still stable and valid even when considering random measurement errors.Moreover,we establish the linear relationship between the time at which the half-point of geosignal curve appears and the distance to boundary(DTB),which would assist in the quick determination of DTB.展开更多
Significant progress has been made in the exploration and development of unconventional gas resources in China since the beginning of the 21st century.With a rapid increase in yield,the exploration and development of ...Significant progress has been made in the exploration and development of unconventional gas resources in China since the beginning of the 21st century.With a rapid increase in yield,the exploration and development of shale gas have been upgraded to a level of national strategy.Logging is one of the core technologies in gas exploration and development.However,logging technologies face the challenges of complex geological conditions and well casing environment,high temperature,high pressure,and strong heterogeneity.Despite the rich experience accumulated,unified understanding and implementation specifications are yet to be established for shale gas well logging.Given the analysis and comparison of the effectiveness and adaptability of logging technologies at different stages of shale gas exploration and development for the Sichuan Basin,this study optimizes the log suite to meet the demand for highefficiency exploration and development of shale gas.According to the adaptability analysis of shale gas log suite,the mandatory logging items of exploratory wells should include caliper log(CAL),natural gamma ray spectrometry(NGS)log,spontaneous potential(SP)log,directional survey,borehole compensated sonic log,litho-density log(LDL),compensated neutron log(CNL),dual laterologmicrospherically focused log/dual induction-laterolog log/array induction log,temperature log,elemental capture spectroscopy(ECS)log,formation microimager(FMI)log,and array sonic log.The log suite of appraisal wells is almost the same as that for exploratory wells,excluding the ECS log and microresistivity scanning imaging.Meanwhile,for the logging of horizontal/highly-deviated holes,the log suite of vertical wells should be referred to according to specific well conditions.展开更多
Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factor...Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.展开更多
基金The National Science and Technology Major Project under contract No.2011ZX05025-002-03the Project of China National Offshore Oil Corporation(CNOOC)Limited under contract No.CCL2013ZJFNO729the National Natural Science Foundation of China under contract No.41530963.
文摘Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater.
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(41974127,42174147).References。
文摘Cement density monitoring plays a vital role in evaluating the quality of cementing projects,which is of great significance to the development of oil and gas.However,the presence of inhomogeneous cement distribution and casing eccentricity in horizontal wells often complicates the accurate evaluation of cement azimuthal density.In this regard,this paper proposes an algorithm to calculate the cement azimuthal density in horizontal wells using a multi-detector gamma-ray detection system.The spatial dynamic response functions are simulated to obtain the influence of cement density on gamma-ray counts by the perturbation theory,and the contribution of cement density in six sectors to the gamma-ray recorded by different detectors is obtained by integrating the spatial dynamic response functions.Combined with the relationship between gamma-ray counts and cement density,a multi-parameter calculation equation system is established,and the regularized Newton iteration method is employed to invert casing eccentricity and cement azimuthal density.This approach ensures the stability of the inversion process while simultaneously achieving an accuracy of 0.05 g/cm^(3) for the cement azimuthal density.This accuracy level is ten times higher compared to density accuracy calculated using calibration equations.Overall,this algorithm enhances the accuracy of cement azimuthal density evaluation,provides valuable technical support for the monitoring of cement azimuthal density in the oil and gas industry.
基金This work is supported by the National Natural Science Foundation of China under Grant 52274057,52074340 and 51874335the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008+2 种基金the Major Scientific and Technological Projects of CNOOC under Grant CCL2022RCPS0397RSNthe Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002111 Project under Grant B08028.
文摘To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods.
基金the financial support from the National Natural Science Foundation of China(42074134,41974146,41574118)the Scientific and Technological Research Projects of Sinopec(JP22503,P21080)+1 种基金the Major Scientific and Technological Projects of China National Petroleum Corporation(ZD2019-184-001)Shandong Provincial Natural Science Foundation(ZR2020MD050)
文摘The maximum distance at which an electromagnetic(EM)logging while drilling(LWD)tool detects an approaching boundary is defined as the depth of detection(DOD).Ultra-deep detection capability of the transient multicomponent EM logging measurement is investigated here.First,we adopt sine and cosine transform to calculate the transient multicomponent responses.Compared to the cosine transform,sine transform is more accurate in solving late-time responses.Then,a time-domain geosignal is introduced to sense the boundary.Results show that DOD of this transient EM measurement can be up to tens of meters,including directionally sensitivity.Additionally,by studying the decay characteristics of different components with time,cross component is confirmed to decay much faster than the coaxial/coplanar components in the formation coordinate system.A pseudo-inversion is thereby proposed to determine the dip angle of anisotropic stratified formation.Theoretical simulation results indicate that this algebraic method can determine the true dip at some particular moments.It is still stable and valid even when considering random measurement errors.Moreover,we establish the linear relationship between the time at which the half-point of geosignal curve appears and the distance to boundary(DTB),which would assist in the quick determination of DTB.
文摘Significant progress has been made in the exploration and development of unconventional gas resources in China since the beginning of the 21st century.With a rapid increase in yield,the exploration and development of shale gas have been upgraded to a level of national strategy.Logging is one of the core technologies in gas exploration and development.However,logging technologies face the challenges of complex geological conditions and well casing environment,high temperature,high pressure,and strong heterogeneity.Despite the rich experience accumulated,unified understanding and implementation specifications are yet to be established for shale gas well logging.Given the analysis and comparison of the effectiveness and adaptability of logging technologies at different stages of shale gas exploration and development for the Sichuan Basin,this study optimizes the log suite to meet the demand for highefficiency exploration and development of shale gas.According to the adaptability analysis of shale gas log suite,the mandatory logging items of exploratory wells should include caliper log(CAL),natural gamma ray spectrometry(NGS)log,spontaneous potential(SP)log,directional survey,borehole compensated sonic log,litho-density log(LDL),compensated neutron log(CNL),dual laterologmicrospherically focused log/dual induction-laterolog log/array induction log,temperature log,elemental capture spectroscopy(ECS)log,formation microimager(FMI)log,and array sonic log.The log suite of appraisal wells is almost the same as that for exploratory wells,excluding the ECS log and microresistivity scanning imaging.Meanwhile,for the logging of horizontal/highly-deviated holes,the log suite of vertical wells should be referred to according to specific well conditions.
基金Supported by the National Science and Technology Major Project(2016ZX05060-014)PetroChina Major Science and Technology Project(ZD2019-183-005)。
文摘Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.