With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The p...With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The phenomenon of low-frequency oscillation caused by lack of damping and moment of inertia is worth studying.In recent years,virtual synchronous generator(VSG)technique has been developed rapidly because it can provide considerable damping and moment of inertia.While improving the stability of the system,it also inevitably causes the problem of active power oscillation,especially the low mutual damping between the VSG and the power grid will make the oscillation more severe.The traditional time-domain state-space method cannot reflect the interaction among state variables and study the interaction between different nodes and branches of the power grid.In this paper,a frequency-domain method for analyzing low-frequency oscillations considering VSG parameter coupling is proposed.First,based on the rotor motion equation of the synchronous generator(SG),a secondorder VSG model and linearized power-frequency control loop model are established.Then,the differences and connections between the coupling of key VSG parameters and low-frequency oscillation characteristics are studied through frequency domain analysis.The path and influencemechanism of a VSG during low-frequency power grid oscillations are illustrated.Finally,the correctness of the theoretical analysis model is verified by simulation.展开更多
With the continuous expansion of the scale of renewable energy installation,the demand for energy storage has increased significantly.However,there are significant differences in the value of energy storage in differe...With the continuous expansion of the scale of renewable energy installation,the demand for energy storage has increased significantly.However,there are significant differences in the value of energy storage in different scenarios,and the phenomenon of diminishing marginal benefits of energy storage is becoming more apparent.Therefore,themulti-dimensional value evolution trend of energy storage has become a key issue.This study selects indicators from three dimensions of energy storage:low-carbon emission reduction,smoothing wind and solar power fluctuations,and saving generation costs,quantifying the economic,environmental,and technical values of energy storage.This forms a quantitative evaluation system for energy storage value.By comparing the calculated system values under different energy storage capacities,the marginal value evolution trend of energy storage is obtained.Meanwhile,considering factors such as the utilization rate of renewable energy,the change in energy storage value under different scenarios is analyzed.The results show that the value of long-duration energy storage is significantly affected by the energy storage capacity.Specifically,when the charge-discharge efficiency of longduration energy storage reaches 0.6 or above,the system value increases significantly.Additionally,appropriately reducing the cost of energy storage capacity also helps to improve its system value.展开更多
With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,bu...With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,but it also leads to the problem of unstable electricity supply.At present,large-scale energy storage technology is not yet mature.Improving the flexibility of coal-fired power plants to suppress the instability of renewable energy generation is a feasible path.Thermal energy storage is a feasible technology to improve the flexibility of coal-fired power plants.This article provides a review of the research on the flexibility transformation of coal-fired power plants based on heat storage technology,mainly including medium to low-temperature heat storage based on hot water tanks and high-temperature heat storage based on molten salt.The current technical difficulties are summarized,and future development prospects are presented.The combination of the thermal energy storage system and coal-fired power generation system is the foundation,and the control of the inclined temperature layer and the selection and development of molten salt are key issues.The authors hope that the research in this article can provide a reference for the flexibility transformation research of coal-fired power plants,and promote the application of heat storage foundation in specific coal-fired power plant transformation projects.展开更多
The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effect...The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effectively with the addition of Hf,Hf can react with Al to form Al3Hf particles during the solidification, the primary Al3Hf particles are highly potent nucleants for Al and the nanoscale coherent Al3Hf particles can inhibit the grain growth by pinning effect. The grain refinement mechanism of studied alloys was verified by the solute theory and the crystallography study, and it can be divided into two distinct types: At low Hf contents, there are no primary Al3Hf phases to form, the acquired grain refinement is primarily attributed to the constitutional undercooling induced by the Hf solute. At medium and high Hf contents, both Hf solute and Al3Hf particles contribute to the refinement.展开更多
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith...With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method.展开更多
Stable and safe operation of power grids is an important guarantee for economy development.Support Vector Machine(SVM)based stability analysis method is a significant method started in the last century.However,the SVM...Stable and safe operation of power grids is an important guarantee for economy development.Support Vector Machine(SVM)based stability analysis method is a significant method started in the last century.However,the SVM method has several drawbacks,e.g.low accuracy around the hyperplane and heavy computational burden when dealing with large amount of data.To tackle the above problems of the SVM model,the algorithm proposed in this paper is optimized from three aspects.Firstly,the gray area of the SVM model is judged by the probability output and the corresponding samples are processed.Therefore the clustering of the samples in the gray area is improved.The problem of low accuracy in the training of the SVM model in the gray area is improved,while the size of the sample is reduced and the efficiency is improved.Finally,by adjusting the model of the penalty factor in the SVM model after the clustering of the samples,the number of samples with unstable states being misjudged as stable is reduced.Test results on the IEEE 118-bus test system verify the proposed method.展开更多
An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric lo...An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric loads,and couples the thermal system and power system.However,existing research commonly ignores or simplifies the internal composition of CHP plants,which could lead to some unavoidable errors.This paper focuses on the internal composition of CHP plants,and models the physical processes in different components and flexible resources in the CHP plant.Furthermore,a joint dispatch problem of an IHPS with the above CHP plant models is formulated,and an iterative algorithm is developed to handle the nonlinearity in this problem.Case studies are performed based on a real CHP plant in Northern China,and the results indicate that the synergistic effect of different energy resources in the CHP plant is realized by the joint dispatch model,which promotes wind power accommodation and reduces fossil fuel consumption.展开更多
Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dis...Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dispatch methods are not suitable for practical application.In this paper,a general math formulation of the hierarchical dispatch method is proposed to coordinate EPS and DHS operators based on the feasible region of boundary variables(FRBV),and a method based on the simplicial approximation approach is proposed to obtain a conservative FRBV approximation of a DHS.A simulation based on a real 41-node DHS is constructed to determine the factors that may impact the boundaries of the FRBV,and then the performance of the simplicial approximation approach is displayed by visualizing the approximation process for the FRBV,and finally three dispatch methods are compared to show the advantages of the proposed hierarchical dispatch method.展开更多
The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,...The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.展开更多
Storage of thermal energy is a key technology for energy conservation and application of renewable energy sources. In this paper, the thermal performance of inorganic composite phase-change materials (PCMs;NaNO3/SiO2/...Storage of thermal energy is a key technology for energy conservation and application of renewable energy sources. In this paper, the thermal performance of inorganic composite phase-change materials (PCMs;NaNO3/SiO2/C) is studied under extreme thermal conditions and the effect of raw particle size is examined. We designed a thermal shock test platform with a diffusive combustion system and in-situ infrared thermal imaging. The influences of the heat flux magnitude and exposure time on the performance of the PCMs were examined under vertical thermal shock conditions. Leakage of molten salt in the composite PCMs was observed as the heat flux reached a threshold point. The morphology and thermal properties were characterized by ex-situ SEM, XRD, DSC, and BET. Raw particles with sizes in the range of 105-500 μm were used to synthesize the composite material and examine its role in thermal shock behavior. Our experiments showed that deterioration of the thermal storage density was slowed as the particle size was increased. This work provides useful guidance for improving the anti-thermal shock ability of future material designs.展开更多
基金supported by Science and Technology Project of State Grid Liaoning Electric Power Supply Co.,Ltd.(2021YF-82).
文摘With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The phenomenon of low-frequency oscillation caused by lack of damping and moment of inertia is worth studying.In recent years,virtual synchronous generator(VSG)technique has been developed rapidly because it can provide considerable damping and moment of inertia.While improving the stability of the system,it also inevitably causes the problem of active power oscillation,especially the low mutual damping between the VSG and the power grid will make the oscillation more severe.The traditional time-domain state-space method cannot reflect the interaction among state variables and study the interaction between different nodes and branches of the power grid.In this paper,a frequency-domain method for analyzing low-frequency oscillations considering VSG parameter coupling is proposed.First,based on the rotor motion equation of the synchronous generator(SG),a secondorder VSG model and linearized power-frequency control loop model are established.Then,the differences and connections between the coupling of key VSG parameters and low-frequency oscillation characteristics are studied through frequency domain analysis.The path and influencemechanism of a VSG during low-frequency power grid oscillations are illustrated.Finally,the correctness of the theoretical analysis model is verified by simulation.
基金supported financially by Thematic Project of the State Grid Liaoning Electric Power Company Limited Economic Research Institute under Grant SGLNJY00GHJS2310109.
文摘With the continuous expansion of the scale of renewable energy installation,the demand for energy storage has increased significantly.However,there are significant differences in the value of energy storage in different scenarios,and the phenomenon of diminishing marginal benefits of energy storage is becoming more apparent.Therefore,themulti-dimensional value evolution trend of energy storage has become a key issue.This study selects indicators from three dimensions of energy storage:low-carbon emission reduction,smoothing wind and solar power fluctuations,and saving generation costs,quantifying the economic,environmental,and technical values of energy storage.This forms a quantitative evaluation system for energy storage value.By comparing the calculated system values under different energy storage capacities,the marginal value evolution trend of energy storage is obtained.Meanwhile,considering factors such as the utilization rate of renewable energy,the change in energy storage value under different scenarios is analyzed.The results show that the value of long-duration energy storage is significantly affected by the energy storage capacity.Specifically,when the charge-discharge efficiency of longduration energy storage reaches 0.6 or above,the system value increases significantly.Additionally,appropriately reducing the cost of energy storage capacity also helps to improve its system value.
基金funded by National Key R&D Program of China,grant number 2019YFB1505400 and 2022YFB2405205.
文摘With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,but it also leads to the problem of unstable electricity supply.At present,large-scale energy storage technology is not yet mature.Improving the flexibility of coal-fired power plants to suppress the instability of renewable energy generation is a feasible path.Thermal energy storage is a feasible technology to improve the flexibility of coal-fired power plants.This article provides a review of the research on the flexibility transformation of coal-fired power plants based on heat storage technology,mainly including medium to low-temperature heat storage based on hot water tanks and high-temperature heat storage based on molten salt.The current technical difficulties are summarized,and future development prospects are presented.The combination of the thermal energy storage system and coal-fired power generation system is the foundation,and the control of the inclined temperature layer and the selection and development of molten salt are key issues.The authors hope that the research in this article can provide a reference for the flexibility transformation research of coal-fired power plants,and promote the application of heat storage foundation in specific coal-fired power plant transformation projects.
基金Project(SGRI-WD-71-13-001) supported by the Scientific and Technological Project of State Grid Corporation of China
文摘The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effectively with the addition of Hf,Hf can react with Al to form Al3Hf particles during the solidification, the primary Al3Hf particles are highly potent nucleants for Al and the nanoscale coherent Al3Hf particles can inhibit the grain growth by pinning effect. The grain refinement mechanism of studied alloys was verified by the solute theory and the crystallography study, and it can be divided into two distinct types: At low Hf contents, there are no primary Al3Hf phases to form, the acquired grain refinement is primarily attributed to the constitutional undercooling induced by the Hf solute. At medium and high Hf contents, both Hf solute and Al3Hf particles contribute to the refinement.
基金supported by the State Grid Liaoning Electric Power Supply CO, LTDthe financial support for the “Key Technology and Application Research of the Self-Service Grid Big Data Governance (No.SGLNXT00YJJS1800110)”
文摘With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method.
基金This work was supported by China’s National key research and development program 2017YFB0902201National Natural Science Foundation of China under Grant 51777104Science and Technology Project of the State Grid Corporation of China.
文摘Stable and safe operation of power grids is an important guarantee for economy development.Support Vector Machine(SVM)based stability analysis method is a significant method started in the last century.However,the SVM method has several drawbacks,e.g.low accuracy around the hyperplane and heavy computational burden when dealing with large amount of data.To tackle the above problems of the SVM model,the algorithm proposed in this paper is optimized from three aspects.Firstly,the gray area of the SVM model is judged by the probability output and the corresponding samples are processed.Therefore the clustering of the samples in the gray area is improved.The problem of low accuracy in the training of the SVM model in the gray area is improved,while the size of the sample is reduced and the efficiency is improved.Finally,by adjusting the model of the penalty factor in the SVM model after the clustering of the samples,the number of samples with unstable states being misjudged as stable is reduced.Test results on the IEEE 118-bus test system verify the proposed method.
基金supported by the National Key Research and Development Program of China under Grant 2017YFB0902100.
文摘An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric loads,and couples the thermal system and power system.However,existing research commonly ignores or simplifies the internal composition of CHP plants,which could lead to some unavoidable errors.This paper focuses on the internal composition of CHP plants,and models the physical processes in different components and flexible resources in the CHP plant.Furthermore,a joint dispatch problem of an IHPS with the above CHP plant models is formulated,and an iterative algorithm is developed to handle the nonlinearity in this problem.Case studies are performed based on a real CHP plant in Northern China,and the results indicate that the synergistic effect of different energy resources in the CHP plant is realized by the joint dispatch model,which promotes wind power accommodation and reduces fossil fuel consumption.
基金This work was supported by the National Key Research and Development Program of China under Grant 2017YFB0902100 and State Grid Corporation of China.
文摘Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dispatch methods are not suitable for practical application.In this paper,a general math formulation of the hierarchical dispatch method is proposed to coordinate EPS and DHS operators based on the feasible region of boundary variables(FRBV),and a method based on the simplicial approximation approach is proposed to obtain a conservative FRBV approximation of a DHS.A simulation based on a real 41-node DHS is constructed to determine the factors that may impact the boundaries of the FRBV,and then the performance of the simplicial approximation approach is displayed by visualizing the approximation process for the FRBV,and finally three dispatch methods are compared to show the advantages of the proposed hierarchical dispatch method.
基金financially supported by State Grid Corporation of China (No.5500-202128250A-0-0-00)。
文摘The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.
基金This research was supported by the National Key Technologies R&D Program of China (2015BAA01B02)the Strategic Priority Research Program of Chinese Academy of Sciences (XDA21070302)+1 种基金the National Natural Science Foundation of China (91434116)Jiangsu Province Scientific program (BA2016120).
文摘Storage of thermal energy is a key technology for energy conservation and application of renewable energy sources. In this paper, the thermal performance of inorganic composite phase-change materials (PCMs;NaNO3/SiO2/C) is studied under extreme thermal conditions and the effect of raw particle size is examined. We designed a thermal shock test platform with a diffusive combustion system and in-situ infrared thermal imaging. The influences of the heat flux magnitude and exposure time on the performance of the PCMs were examined under vertical thermal shock conditions. Leakage of molten salt in the composite PCMs was observed as the heat flux reached a threshold point. The morphology and thermal properties were characterized by ex-situ SEM, XRD, DSC, and BET. Raw particles with sizes in the range of 105-500 μm were used to synthesize the composite material and examine its role in thermal shock behavior. Our experiments showed that deterioration of the thermal storage density was slowed as the particle size was increased. This work provides useful guidance for improving the anti-thermal shock ability of future material designs.