In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are...In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.展开更多
Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce...Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce bandwidth resource. Although many works have been done for caching in HCNs, from an energy perspective, there still exists much space to develop a more energy-efficient system when considering the fact that the majority of base stations are under-utilized in the most of the time. Therefore, in this paper, by taking the activation mechanism for the base stations into account, we study a joint caching and activation mechanism design to further improve the energy efficiency, then we formulate the optimization problem as an Integer Linear Programming problem(ILP) to maximize the system energy saving. Due to the enormous computation complexity for finding the optimal solution, we introduced a Quantum-inspired Evolutionary Algorithm(QEA) to iteratively provide the global best solution. Numerical results show that our proposed algorithm presents an excellent performance, which is far better than the strategy of only considering caching without deactivation mechanism in the actual, normal situation. We also provide performance comparison amongour QEA, random sleeping algorithm and greedy algorithm, numerical results illustrate our introduced QEA performs best in accuracy and global optimality.展开更多
IPv4 address space has been exhausted since2011.The problem will be solved by moving forward to the next-generation Internet based on IPv6.Smooth transition from IPv4 to IPv6is the key to deciding whether the next-gen...IPv4 address space has been exhausted since2011.The problem will be solved by moving forward to the next-generation Internet based on IPv6.Smooth transition from IPv4 to IPv6is the key to deciding whether the next-generation Internet is successful.IPv6-transition,hence,has been become the focus of both industry and academia.展开更多
Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Conseq...Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.展开更多
基金supported by the National Natural Science Foundation of China(No.92267301).
文摘In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.
基金jointly supported by the National Natural Science Foundation of China (No.61501042)the National High Technology Research and Development Program(863) of China (2015AA016101)+1 种基金Beijing Nova Program(Z151100000315078)Information Network Open Source Platform and Technology Development Strategy(No.2016-XY-09)
文摘Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce bandwidth resource. Although many works have been done for caching in HCNs, from an energy perspective, there still exists much space to develop a more energy-efficient system when considering the fact that the majority of base stations are under-utilized in the most of the time. Therefore, in this paper, by taking the activation mechanism for the base stations into account, we study a joint caching and activation mechanism design to further improve the energy efficiency, then we formulate the optimization problem as an Integer Linear Programming problem(ILP) to maximize the system energy saving. Due to the enormous computation complexity for finding the optimal solution, we introduced a Quantum-inspired Evolutionary Algorithm(QEA) to iteratively provide the global best solution. Numerical results show that our proposed algorithm presents an excellent performance, which is far better than the strategy of only considering caching without deactivation mechanism in the actual, normal situation. We also provide performance comparison amongour QEA, random sleeping algorithm and greedy algorithm, numerical results illustrate our introduced QEA performs best in accuracy and global optimality.
文摘IPv4 address space has been exhausted since2011.The problem will be solved by moving forward to the next-generation Internet based on IPv6.Smooth transition from IPv4 to IPv6is the key to deciding whether the next-generation Internet is successful.IPv6-transition,hence,has been become the focus of both industry and academia.
基金supported under the National Basic Research Program(973) of China(Project Number: 2012CB315801)the National Natural Science Fund(Project Number:61300184)the fundamental research funds for the Central Universities(Project Number:2013RC0113)
文摘Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.