Continuously variable transmission(CVT)of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency.The key technology of CVT with noncircular gear has been broken throug...Continuously variable transmission(CVT)of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency.The key technology of CVT with noncircular gear has been broken through some countries,and is in the stage of deep application research.Although the characteristics and design methods of noncircular gear pairs have been continuously studied in China,the noncircular gear CVT is still in the preliminary exploration and research stage.The linear functional noncircular gear pair,whose transmission ratio is a linear function in the working section,to realize continuously variable transmission was the research object in this paper.According to the required transmission ratio in the working section,the transmission ratio function in the non-working section was constructed by using a polynomial.And then the influence of pitch curve parameters in the working section on which in the non-working section was also analyzed to obtain the pitch curve suitable for transmission of this gear pair.In addition,for improving the stability and bearing capacity of gear transmission,the noncircular gear pair transmission with high contact ratio was designed.Furthermore,the accurate value of the contact tooth length was calculated based on the gear principle and the characteristics of the involute tooth profile,from this the contact tooth length error was calculated by comparing the accurate value with its actual value obtained by the rolling experiment.Finally,an indirect method to verify the contact ratio by detecting the contact length error of the tooth profile was proposed.展开更多
The so-called fourth-generation biodegradable vascular stent has become a research hotspot in thefield of bioengineering because of its good degradation ability and drug-loading characteristics.However,the preparationo...The so-called fourth-generation biodegradable vascular stent has become a research hotspot in thefield of bioengineering because of its good degradation ability and drug-loading characteristics.However,the preparationof polymer-degraded vascular stents is affected by known problem such as poor processflexibility,low formingaccuracy,large diameter wall thickness,limited complex pore structure,weak mechanical properties of radial support and high process cost.In this study,a deposition technique based on a high-voltage electric-field-driven continuous rotating jet is proposed to fabricate fully degraded polymer vascular stents.The experimental results showthat,due to the rotation of the deposition axis,the deposition direction of PCL(polycaprolactone)micro-jet isalways tangent to the surface of the deposition axis.The direction of the viscous drag force is also consistent withthe deposition direction of the jet.It is shown that by setting different rotation speeds of deposition axisωandlinear motion speeds of the nozzle V,the direction of rotation,pitch and angle of the individual printed spiralcurve can be precisely tuned.In the process of multiple spiral curves matching the deposition forming thin walltube mesh,the mesh shape and size of the thin wall tube can be accurately controlled by changing the number ofmatching spiral curves and the size of the matching position bias distance.Finally,the characteristics of a PCLtubular stent sample(with uniform-size microfibers and mesh shape),fabricated under the appropriate processparameters are described in detail.展开更多
Influence of three different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheetwas investigated.Route A and Route B are unidirectional rolling(UR)where the rolling direction is...Influence of three different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheetwas investigated.Route A and Route B are unidirectional rolling(UR)where the rolling direction is along initial rolling direction(RD)and transverse direction(TD),respectively.Route C is cross rolling(CR)where the rolling direction is changed by90°aftereach rolling pass.The microstructure and texture,tensile mechanical properties including strength and elongation,and also theanisotropy of the UR and CR sheets were investigated at room temperature.The XRD results indicate that the texture intensity ofrolled samples gradually weakens from Route A to Route C.Compared with Route A and Route B rolled samples,the Route C rolledsamples show a smaller planar anisotropy.The deep drawing tests reveal that cross rolling can avoid the occurrence of earing.Erichsen tests indicate that rolling routes have an effect on stretch formability of pure titanium sheet.展开更多
Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an av...Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens.展开更多
The FeCrNi alloy powders were used on the dovetail groove of FV520B steel to fabricate the multilayer laser cladding layers. The effects of heat treatment on the microstructure and mechanical properties of FeCrNi laye...The FeCrNi alloy powders were used on the dovetail groove of FV520B steel to fabricate the multilayer laser cladding layers. The effects of heat treatment on the microstructure and mechanical properties of FeCrNi layers were investigated. The results showed that the heat treatment at the temperature ranged from 1073 to 1273 K refined the grains of the substrate materials and removed the soft zone of hardness between the fused zone (FZ) and base material (BM) effectively mainly due to a secondary quench of heat treatment. When the temperature of heat treatment was 1073 K, the maximum ultimate tensile strength (UTS) values of the laser cladding component were obtained. However, the heat treatment at high temperature had a bad effect on wear resistance of coatings at some extent.展开更多
Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing wi...Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing with crossed axes has no common plane of action which results in a point contact and low tooth durability.Therefore,a geometry design approach assuming line contact is developed to analyze the tooth engagement process of crossed beveloid gears with small shaft angle for marine transmission applications.The loaded gear tooth contact behavior is simulated by applying a quasi-static analysis to study the effects of gearing parameters on mesh characteristics.Using the proposed method,a series of sensitivity analyses to examine the effects of critical gearing parameters such as shaft angle,cone angle,helix angle and profile-shift coefficient on the theoretical gear mesh is performed.The parametric analysis of pitch cone design shows that the dominant design parameters represented by the angle between the first principle directions(FPD) and normal angular factor are more sensitive to the shaft and cone angles than they are to the helix angle.The theoretical contact path is highly sensitive to the profile-shift coefficient,which is determined from the theoretical tooth contact analysis.The FPD angle is found to change the distribution of contact pattern,contact pressure and root stress as well as the translational transmission error and the variation of the mesh stiffness significantly.The contact pattern is clearly different between the drive and coast sides due to different designed FPD angles.Finally,a practical experimental setup for marine transmission is performed and tooth bearing test is conducted to demonstrate the proposed design procedure.The experimental result compared well with the simulation.Results of this study yield a better understanding of the geometry design and loaded gear mesh characteristics for crossed beveloid gears used in marine transmission.展开更多
The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanica...The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanical properties of AZ91D/0Cr19Ni9 interface were investigated. The results showed that the mechanical bonding was obtained between AZ91D and bare steel 0Cr19Ni9 where a gap existed at the interface; the metallurgical bonding was formed between AZ91D and Al-coated 0Cr19Ni9, which could be divided into two different intermetallic layers: layer Ⅰ was mainly composed of α-Mg+β-Mg17Al12 eutectic structure and a small amount of MgAl2O4, and layer Ⅱ mainly comprised of Fe2Al5 intermetallic compound. Furthermore, the hardness value of interface was obviously higher than that of AZ91D matrix, and the average hardness values of layers Ⅰ and Ⅱ were HV 158 and HV 493, respectively. The shear strength of AZ91D/Al-coated 0Cr19Ni9 interface was higher than that of AZ91D/bare 0Cr19Ni9 interface, which confirmed that Al coating could improve the adhesive strength between AZ91D and 0Cr19Ni9 during liquid-solid compound casting process.展开更多
To achieve Ti/Mg bimetallic composite with high strength and metallurgical bonding interface,Al interlayer and Zn/Al composite interlayer were used to prepare TC4/AZ91D bimetal composite with metallurgical bonding int...To achieve Ti/Mg bimetallic composite with high strength and metallurgical bonding interface,Al interlayer and Zn/Al composite interlayer were used to prepare TC4/AZ91D bimetal composite with metallurgical bonding interface by solid-liquid compound casting,respectively.Al interlayer was prepared on the surface of TC4 alloy by hot dipping,and Zn/Al composite interlayer was prepared by electroplating process.The results suggested that the phases across the interface were Al Ti andα(Al)+Mg_(21)(Al,Zn)_(17)when Zn/Al composite interlayer was used.When Al interlayer was used as interlayer,Al Mg Ti ternary structure and Al_(12)Mg_(17)+δ-Mg eutectic structure were the main phases at the interface.The shear strength of TC4/AZ91D bimetal with Zn/Al composite interlayer was much higher than that with pure Al interlayer,and the value of the shear strength was increased from 48.5 to 67.4 MPa.Thermodynamic models based on different compositions of the interface were established to explain the microstructure evolution of the interfacial zone.展开更多
The microstructures and mechanical properties of the composite extruded AZ31/AZ31 and AZ31/4047 Al sheets were investigated and made a comparison to the conventional extruded AZ31 sheet.Owing to the introduced intense...The microstructures and mechanical properties of the composite extruded AZ31/AZ31 and AZ31/4047 Al sheets were investigated and made a comparison to the conventional extruded AZ31 sheet.Owing to the introduced intense shear deformation at the interface during the composite extrusion,grain refinement and tilted texture were detected in AZ31 layers of the AZ31/AZ31 and AZ31/4047 Al sheets,while the conventional extruded AZ31 sheet exhibited a relative coarse,inhomogeneous microstructure and strong basal texture.The compressiontension yield ratio was increased gradually from the AZ31 to the AZ31/AZ31 and AZ31/4047 Al sheets.Besides,the AZ31/4047 Al sheet could successfully accomplish the whole bending forming process at room temperature,while the AZ31 and AZ31/AZ31 sheets were both bend-formed to failure with significant cracks in the outer tensile region under the identical bending parameters.Moreover,under the same bending strain,both the outward offset degree of strain neutral layer and the sheet thickening were more serious in the AZ31/4047 Al composite sheet than those of the AZ31 and AZ31/AZ31 sheets.The foremost reason was the quite wide gap of material properties between Mg alloy AZ31 layer(tensile loading in the outer region)and Al 4047 layer(compressive loading in the inner region).展开更多
In this study,the optimization of mechanical and damping capacities of Mg-0.6 wt.%Zr alloys by controlling the recrystallized(DRXed)grain size under varying extrusion processing parameters including extrusion temperat...In this study,the optimization of mechanical and damping capacities of Mg-0.6 wt.%Zr alloys by controlling the recrystallized(DRXed)grain size under varying extrusion processing parameters including extrusion temperature T and strain rate was investigated.The relationship between the DRXed grain size and damping properties of the studied alloy was also discussed.The DRXed grain size of the as-extruded Mg-Zr alloys decreased as the extrusion temperature T decreased and the strain rateεincreased.As the DRXed grain size decreased,the strength and elongation of the as-extruded alloys exhibited improved performance through the grain refinement mechanism,while the damping properties deteriorated.The extrusion temperature of the Mg-Zr alloy had relatively greater effects on the mechanical and damping properties than the strain rate.The results of the present work indicate that alloys with appropriate mechanical and damping properties may be obtained from controlling the DRXed grain size by careful tailoring of the extrusion process parameters.展开更多
Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based ...Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.展开更多
A novel extrusion approach,entitled slope extrusion(SE),was employed to manufacture AZ31(Mg-3Al-1 Zn,wt%)alloy sheets.The microstructures,textures,and mechanical properties were investigated,compared with those of the...A novel extrusion approach,entitled slope extrusion(SE),was employed to manufacture AZ31(Mg-3Al-1 Zn,wt%)alloy sheets.The microstructures,textures,and mechanical properties were investigated,compared with those of the AZ31 sheet fabricated by conventional extrusion(CE).Through the combination of finite element simulation and actual experiment,the ultimate results indicated that significant grain refinement(from 9.1 to 7.7 and 5.6μm)and strong basal texture(from 12.6 to 17.6 and 19.5 mrd)were achieved by the SE process.The essence was associated with the additional introduced inclined interface in the process of SE,which could bring about more asymmetric deformation and stronger accumulated strain along the ND when compared with the process of CE.As a consequence,the SE sheets exhibited a higher yield strength(YS)and ultimate tensile strength(UTS)than the counterparts of the CE sheet,which was mainly assigned to the synergistic effects from grain refining and texture strengthening.展开更多
Mg-4 Li-3(Al-Si),Mg-8 Li-3(Al-Si)and Mg-12 Li-3(Al-Si)alloys based on theα-Mg,α-Mg+β-Li,β-Li phases,respectively,were produced to investigate the effect of alloying with Al-Si eutectic on the microstructure and me...Mg-4 Li-3(Al-Si),Mg-8 Li-3(Al-Si)and Mg-12 Li-3(Al-Si)alloys based on theα-Mg,α-Mg+β-Li,β-Li phases,respectively,were produced to investigate the effect of alloying with Al-Si eutectic on the microstructure and mechanical properties of the three alloys.Alloying with the Al-Si eutectic of Mg-xLi(x=4,8 and 12 wt.%)alloys caused the formation of different types of Al-Li precipitates:Al3Li,AlLi and Li3Al2,respectively.Also,considerable quantities of Mg2Si phase particles were found in the three alloys.The results of tensile tests showed that the Mg-4Li-3(Al-Si)alloy exhibited the highest ultimate tensile strength(UTS)of 249 MPa but the lowest elongation of 6.3%.The Mg-12Li-3(Al-Si)alloy had the highest elongation of 26%but the lowest UTS of 173 MPa.The different mechanical properties were attributed to the different crystal structures of the three alloys and the precipitate with different type,morphology and distribution.展开更多
The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd...The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd/Mg−13Gd laminate forms a significant difference in grain size between the successive layers when extruded at 330℃,and this difference gradually disappears as the extrusion temperature increases from 380 to 430℃.Besides,the growth rate of recrystallized grains in fine-grained layers is faster than that in coarse-grained layers.Moreover,the diffusion ability of Gd element increases with elevating extrusion temperatures,promoting the increase and coarsening of precipitates in fine-grained layers.Tensile tests indicate that the sample extruded at 380℃ has a superior combination of strength and ductility.This is mainly attributed to the synergy of the heterogeneous texture between coarse and fine-grained layers,hetero-deformation induced strengthening and hardening.The fine-grained layers facilitate the activation of prismaticáañslips,while coarse-grained layers make it easier to active basaláañand pyramidalác+añslips,especially for the sample extruded at 380℃.The activation of pyramidalác+añslips contributes to coordinating further plastic deformation.展开更多
In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mech...In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mechanism and flywheel was researched, a design method of transmission parameter optimization was proposed, and the comprehensive matching control strategy was established for the new transmission system. Fuzzy controllers for throttle opening and CVT speed ratio were designed, and power performance and fuel economy of both vehicles respectively equipped with conventional CVT system and new transmission system wrere compared and analyzed by simulation. The results show that power performance and fuel economy of the vehicle equipped with new transmission system are better than that equipped with conventional CVT, thus the rationality of the parameter design method and control algorithm are verified.展开更多
The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investiga...The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investigated.It wasfound that compared with those of activating TIG(A-TIG),and obvious refinement ofα-Mg grains was achieved and the finestα-Mggrains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating.In addition,thepenetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux.However,the welded jointswith TiO2+GNPs flux coating showed better mechanical properties(i.e.,ultimate tensile strength and microhardness)than those withTiO2+SiCp flux coating.Moreover,the generation of necking only occurred in the welded joints with TiO2+GNPs flux.展开更多
A fully flexure micro/nano transmission platform(MNTP)which has five degrees of freedom is designed on the basis of bridge type amplification mechanism.According to the kinematic theory and the elastic beam theory,the...A fully flexure micro/nano transmission platform(MNTP)which has five degrees of freedom is designed on the basis of bridge type amplification mechanism.According to the kinematic theory and the elastic beam theory,the theoretical output displacement equation of the platform is derived,and then piezoelectric actuator(PZT)is calibrated.Meanwhile,a full closed-loop control strategy of the platform is established using the feedforward proportional-integral-derivative(PID)compound control algorithm based on the Preisach model.Moreover,the total transfer function of the micro positioning system is derived,and the calculation method of output signal is acquired.Finally,the theoretical output displacement is verified by finite element analysis(FEA)and positioning experiments.展开更多
The transmission characteristics of gear drive can be improved with the use of novel tooth profiles.A theoretical study on tooth profile of the hypocycloid pinwheel transmission and contact analysis of gear pair based...The transmission characteristics of gear drive can be improved with the use of novel tooth profiles.A theoretical study on tooth profile of the hypocycloid pinwheel transmission and contact analysis of gear pair based on finite element method(FEM) are carried out,respectively.The line contact between mated tooth surfaces becomes point contact according to a plus movement.Through loaded tooth contact analysis(LTCA),the contact stress and load distributions for the proposed hypocycloid pinwheel transmission and the traditional one are discussed.The analysis results show that the developed tooth surfaces have anticipatory point contact characteristics under loads and contact fatigue dangerous area locates around the ultimate contact position.展开更多
A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element ...A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profle is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance.展开更多
In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are ...In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51675060)Equipment Pre-Research Project(Grant No.3010519404)+2 种基金Chongqing University Graduate Student Research Innovation Project(Grant No.CYB19011)National Natural Science Foundation of China(Grant No.U1864210)Scientific Research Foundation of Binzhou University(Grant No.2022Y2).
文摘Continuously variable transmission(CVT)of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency.The key technology of CVT with noncircular gear has been broken through some countries,and is in the stage of deep application research.Although the characteristics and design methods of noncircular gear pairs have been continuously studied in China,the noncircular gear CVT is still in the preliminary exploration and research stage.The linear functional noncircular gear pair,whose transmission ratio is a linear function in the working section,to realize continuously variable transmission was the research object in this paper.According to the required transmission ratio in the working section,the transmission ratio function in the non-working section was constructed by using a polynomial.And then the influence of pitch curve parameters in the working section on which in the non-working section was also analyzed to obtain the pitch curve suitable for transmission of this gear pair.In addition,for improving the stability and bearing capacity of gear transmission,the noncircular gear pair transmission with high contact ratio was designed.Furthermore,the accurate value of the contact tooth length was calculated based on the gear principle and the characteristics of the involute tooth profile,from this the contact tooth length error was calculated by comparing the accurate value with its actual value obtained by the rolling experiment.Finally,an indirect method to verify the contact ratio by detecting the contact length error of the tooth profile was proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51305128 and 52005059)The Key Scientific and Technological Project of Henan Province(Grant Nos.242102231054 and 242102220073)The Provincial Graduate Quality Engineering Project(Grant No.YJS2024JD38)。
文摘The so-called fourth-generation biodegradable vascular stent has become a research hotspot in thefield of bioengineering because of its good degradation ability and drug-loading characteristics.However,the preparationof polymer-degraded vascular stents is affected by known problem such as poor processflexibility,low formingaccuracy,large diameter wall thickness,limited complex pore structure,weak mechanical properties of radial support and high process cost.In this study,a deposition technique based on a high-voltage electric-field-driven continuous rotating jet is proposed to fabricate fully degraded polymer vascular stents.The experimental results showthat,due to the rotation of the deposition axis,the deposition direction of PCL(polycaprolactone)micro-jet isalways tangent to the surface of the deposition axis.The direction of the viscous drag force is also consistent withthe deposition direction of the jet.It is shown that by setting different rotation speeds of deposition axisωandlinear motion speeds of the nozzle V,the direction of rotation,pitch and angle of the individual printed spiralcurve can be precisely tuned.In the process of multiple spiral curves matching the deposition forming thin walltube mesh,the mesh shape and size of the thin wall tube can be accurately controlled by changing the number ofmatching spiral curves and the size of the matching position bias distance.Finally,the characteristics of a PCLtubular stent sample(with uniform-size microfibers and mesh shape),fabricated under the appropriate processparameters are described in detail.
基金Project(CDJZR14130009) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CSTC2012GGB50003) supported by the Scientific and Technological Program of Chongqing Science and Technology Commission,ChinaProject(CSCT2014FAZKTJCSF50004) supported by the Demonstrative Project of Chongqing Science and Technology Commission,China
文摘Influence of three different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheetwas investigated.Route A and Route B are unidirectional rolling(UR)where the rolling direction is along initial rolling direction(RD)and transverse direction(TD),respectively.Route C is cross rolling(CR)where the rolling direction is changed by90°aftereach rolling pass.The microstructure and texture,tensile mechanical properties including strength and elongation,and also theanisotropy of the UR and CR sheets were investigated at room temperature.The XRD results indicate that the texture intensity ofrolled samples gradually weakens from Route A to Route C.Compared with Route A and Route B rolled samples,the Route C rolledsamples show a smaller planar anisotropy.The deep drawing tests reveal that cross rolling can avoid the occurrence of earing.Erichsen tests indicate that rolling routes have an effect on stretch formability of pure titanium sheet.
基金Project(2016YFB0301104) supported by the National Key Research and Development Program of ChinaProjects(51671041,51531002) supported by the National Natural Science Foundation of ChinaProject(cstc2017jcyjBX0040) supported by the Natural Science Foundation of Chongqing City,China
文摘Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens.
基金Project(51375511)supported by the National Natural Science Foundation of ChinaProject(CDJZR14130008)supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project(CDJZR13130033)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(CDJZR13130080)supported by the Fundamental Research Funds for the Central Universities of China
文摘The FeCrNi alloy powders were used on the dovetail groove of FV520B steel to fabricate the multilayer laser cladding layers. The effects of heat treatment on the microstructure and mechanical properties of FeCrNi layers were investigated. The results showed that the heat treatment at the temperature ranged from 1073 to 1273 K refined the grains of the substrate materials and removed the soft zone of hardness between the fused zone (FZ) and base material (BM) effectively mainly due to a secondary quench of heat treatment. When the temperature of heat treatment was 1073 K, the maximum ultimate tensile strength (UTS) values of the laser cladding component were obtained. However, the heat treatment at high temperature had a bad effect on wear resistance of coatings at some extent.
基金supported by Fundamental Research Funds for Central Universities of China (Grant No. CDJXS11111138,Key Projects in the National Science & Technology Pillar Program during the 11th Five-Year Plan Period of China(Grant No. 2011BAF09B07)National Natural Science Foundatlon of China(Grant No. 51175523)
文摘Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing with crossed axes has no common plane of action which results in a point contact and low tooth durability.Therefore,a geometry design approach assuming line contact is developed to analyze the tooth engagement process of crossed beveloid gears with small shaft angle for marine transmission applications.The loaded gear tooth contact behavior is simulated by applying a quasi-static analysis to study the effects of gearing parameters on mesh characteristics.Using the proposed method,a series of sensitivity analyses to examine the effects of critical gearing parameters such as shaft angle,cone angle,helix angle and profile-shift coefficient on the theoretical gear mesh is performed.The parametric analysis of pitch cone design shows that the dominant design parameters represented by the angle between the first principle directions(FPD) and normal angular factor are more sensitive to the shaft and cone angles than they are to the helix angle.The theoretical contact path is highly sensitive to the profile-shift coefficient,which is determined from the theoretical tooth contact analysis.The FPD angle is found to change the distribution of contact pattern,contact pressure and root stress as well as the translational transmission error and the variation of the mesh stiffness significantly.The contact pattern is clearly different between the drive and coast sides due to different designed FPD angles.Finally,a practical experimental setup for marine transmission is performed and tooth bearing test is conducted to demonstrate the proposed design procedure.The experimental result compared well with the simulation.Results of this study yield a better understanding of the geometry design and loaded gear mesh characteristics for crossed beveloid gears used in marine transmission.
基金Project(cstc2015yykfC0001)supported by the National Engineering Research Centre for Magnesium Alloys,ChinaProject supported by State Key Laboratory of Mechanical Transmission of Chongqing University,China
文摘The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanical properties of AZ91D/0Cr19Ni9 interface were investigated. The results showed that the mechanical bonding was obtained between AZ91D and bare steel 0Cr19Ni9 where a gap existed at the interface; the metallurgical bonding was formed between AZ91D and Al-coated 0Cr19Ni9, which could be divided into two different intermetallic layers: layer Ⅰ was mainly composed of α-Mg+β-Mg17Al12 eutectic structure and a small amount of MgAl2O4, and layer Ⅱ mainly comprised of Fe2Al5 intermetallic compound. Furthermore, the hardness value of interface was obviously higher than that of AZ91D matrix, and the average hardness values of layers Ⅰ and Ⅱ were HV 158 and HV 493, respectively. The shear strength of AZ91D/Al-coated 0Cr19Ni9 interface was higher than that of AZ91D/bare 0Cr19Ni9 interface, which confirmed that Al coating could improve the adhesive strength between AZ91D and 0Cr19Ni9 during liquid-solid compound casting process.
基金the financial support from the National Natural Science Foundation of China(No.51875062)。
文摘To achieve Ti/Mg bimetallic composite with high strength and metallurgical bonding interface,Al interlayer and Zn/Al composite interlayer were used to prepare TC4/AZ91D bimetal composite with metallurgical bonding interface by solid-liquid compound casting,respectively.Al interlayer was prepared on the surface of TC4 alloy by hot dipping,and Zn/Al composite interlayer was prepared by electroplating process.The results suggested that the phases across the interface were Al Ti andα(Al)+Mg_(21)(Al,Zn)_(17)when Zn/Al composite interlayer was used.When Al interlayer was used as interlayer,Al Mg Ti ternary structure and Al_(12)Mg_(17)+δ-Mg eutectic structure were the main phases at the interface.The shear strength of TC4/AZ91D bimetal with Zn/Al composite interlayer was much higher than that with pure Al interlayer,and the value of the shear strength was increased from 48.5 to 67.4 MPa.Thermodynamic models based on different compositions of the interface were established to explain the microstructure evolution of the interfacial zone.
基金The authors are grateful for the financial supports from the National Key Research and Development Program of China(2016YFB0301104 and 2016YFB0101700)Chongqing Science and Technology Commission(cstc2017zdcy-zdzxX0006,cstc2017jcyjAX0012,cstc2018jcyjAX0472)+3 种基金National Natural Science Foundation of China(51531002 and U1764253)Chongqing Scientific&Technological Talents Program(KJXX2017002)China Postdoctoral Science Foundation(2018T110948)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN201801306).
文摘The microstructures and mechanical properties of the composite extruded AZ31/AZ31 and AZ31/4047 Al sheets were investigated and made a comparison to the conventional extruded AZ31 sheet.Owing to the introduced intense shear deformation at the interface during the composite extrusion,grain refinement and tilted texture were detected in AZ31 layers of the AZ31/AZ31 and AZ31/4047 Al sheets,while the conventional extruded AZ31 sheet exhibited a relative coarse,inhomogeneous microstructure and strong basal texture.The compressiontension yield ratio was increased gradually from the AZ31 to the AZ31/AZ31 and AZ31/4047 Al sheets.Besides,the AZ31/4047 Al sheet could successfully accomplish the whole bending forming process at room temperature,while the AZ31 and AZ31/AZ31 sheets were both bend-formed to failure with significant cracks in the outer tensile region under the identical bending parameters.Moreover,under the same bending strain,both the outward offset degree of strain neutral layer and the sheet thickening were more serious in the AZ31/4047 Al composite sheet than those of the AZ31 and AZ31/AZ31 sheets.The foremost reason was the quite wide gap of material properties between Mg alloy AZ31 layer(tensile loading in the outer region)and Al 4047 layer(compressive loading in the inner region).
基金The authors are grateful for the financial support from the foundation support of the Key Laboratory of Science and Technology on High Energy Laser,CAEP,the National Natural Science Foundation Commission of China(Grant No.51271206)the National Basic Research Program of China(Grant No.2013CB632201)the Program for New Century Excellent Talents in University(Grant No.NCET-11-0554).
文摘In this study,the optimization of mechanical and damping capacities of Mg-0.6 wt.%Zr alloys by controlling the recrystallized(DRXed)grain size under varying extrusion processing parameters including extrusion temperature T and strain rate was investigated.The relationship between the DRXed grain size and damping properties of the studied alloy was also discussed.The DRXed grain size of the as-extruded Mg-Zr alloys decreased as the extrusion temperature T decreased and the strain rateεincreased.As the DRXed grain size decreased,the strength and elongation of the as-extruded alloys exhibited improved performance through the grain refinement mechanism,while the damping properties deteriorated.The extrusion temperature of the Mg-Zr alloy had relatively greater effects on the mechanical and damping properties than the strain rate.The results of the present work indicate that alloys with appropriate mechanical and damping properties may be obtained from controlling the DRXed grain size by careful tailoring of the extrusion process parameters.
基金Project(51775059)supported by the National Natural Science Foundation of ChinaProject(2017YFB1300700)supported by the National Key Research&Development Program of China。
文摘Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.
基金financially supported by the National Natural Science Foundation of China (Nos. U1764253, 51971044, 51901204, U1910213 52001037, and U207601)the National Defense Basic Scientific Research Program of China, the Chongqing Science and Technology Commission, China (No.cstc2017zdcy-zdzxX0006)+4 种基金the Chongqing Municipal Education Commission, China (No.KJZDK202001502)the Chongqing Scientific & Technological Talents Program, China (No.KJXX2017002)the Qinghai Scientific & Technological Program, China (No.2018-GXA1)the Zhejiang Provincial Natural Science Foundation, China (No.LGG21E050009)the Research Start-up Funds of Shaoxing University, China (No.20210007)
文摘A novel extrusion approach,entitled slope extrusion(SE),was employed to manufacture AZ31(Mg-3Al-1 Zn,wt%)alloy sheets.The microstructures,textures,and mechanical properties were investigated,compared with those of the AZ31 sheet fabricated by conventional extrusion(CE).Through the combination of finite element simulation and actual experiment,the ultimate results indicated that significant grain refinement(from 9.1 to 7.7 and 5.6μm)and strong basal texture(from 12.6 to 17.6 and 19.5 mrd)were achieved by the SE process.The essence was associated with the additional introduced inclined interface in the process of SE,which could bring about more asymmetric deformation and stronger accumulated strain along the ND when compared with the process of CE.As a consequence,the SE sheets exhibited a higher yield strength(YS)and ultimate tensile strength(UTS)than the counterparts of the CE sheet,which was mainly assigned to the synergistic effects from grain refining and texture strengthening.
基金Projects(51971040,51701029,51671041,51531002) supported by the National Natural Science Foundation of ChinaProject(2016YFB0301100) supported by the National Key Research and Development Program of China+2 种基金Projects(2018T110943,2017M620410) supported by the China Postdoctoral Science FoundationProject(Xm2017010) supported by the the Chongqing Postdoctoral Scientific Research Foundation,ChinaProject(2018CDGFCL005) supported by the Fundamental Research Funds for the Central Universities,China
文摘Mg-4 Li-3(Al-Si),Mg-8 Li-3(Al-Si)and Mg-12 Li-3(Al-Si)alloys based on theα-Mg,α-Mg+β-Li,β-Li phases,respectively,were produced to investigate the effect of alloying with Al-Si eutectic on the microstructure and mechanical properties of the three alloys.Alloying with the Al-Si eutectic of Mg-xLi(x=4,8 and 12 wt.%)alloys caused the formation of different types of Al-Li precipitates:Al3Li,AlLi and Li3Al2,respectively.Also,considerable quantities of Mg2Si phase particles were found in the three alloys.The results of tensile tests showed that the Mg-4Li-3(Al-Si)alloy exhibited the highest ultimate tensile strength(UTS)of 249 MPa but the lowest elongation of 6.3%.The Mg-12Li-3(Al-Si)alloy had the highest elongation of 26%but the lowest UTS of 173 MPa.The different mechanical properties were attributed to the different crystal structures of the three alloys and the precipitate with different type,morphology and distribution.
基金financially supported by the National Natural Science Foundation of China (Nos.52071035,U1764253)。
文摘The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd/Mg−13Gd laminate forms a significant difference in grain size between the successive layers when extruded at 330℃,and this difference gradually disappears as the extrusion temperature increases from 380 to 430℃.Besides,the growth rate of recrystallized grains in fine-grained layers is faster than that in coarse-grained layers.Moreover,the diffusion ability of Gd element increases with elevating extrusion temperatures,promoting the increase and coarsening of precipitates in fine-grained layers.Tensile tests indicate that the sample extruded at 380℃ has a superior combination of strength and ductility.This is mainly attributed to the synergy of the heterogeneous texture between coarse and fine-grained layers,hetero-deformation induced strengthening and hardening.The fine-grained layers facilitate the activation of prismaticáañslips,while coarse-grained layers make it easier to active basaláañand pyramidalác+añslips,especially for the sample extruded at 380℃.The activation of pyramidalác+añslips contributes to coordinating further plastic deformation.
基金Project(2011BA3019)supported by the Chongqing Natural Science Foundation,China
文摘In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mechanism and flywheel was researched, a design method of transmission parameter optimization was proposed, and the comprehensive matching control strategy was established for the new transmission system. Fuzzy controllers for throttle opening and CVT speed ratio were designed, and power performance and fuel economy of both vehicles respectively equipped with conventional CVT system and new transmission system wrere compared and analyzed by simulation. The results show that power performance and fuel economy of the vehicle equipped with new transmission system are better than that equipped with conventional CVT, thus the rationality of the parameter design method and control algorithm are verified.
基金Project(51375511) supported by the National Natural Science Foundation of ChinaProject(cstc2016jcyj A0167) supported by the Research Program of Basic Research and Frontier Technology of Chongqing of China+1 种基金Project(SF201602) supported by the Science and Technology Project in the Field of Social Development of Shapingba District of Chongqing of ChinaProject(XJ201608) supported by the Key Industry Technology Innovation Funds of Science and Technology Development Board of Xiangcheng District of Suzhou of China
文摘The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investigated.It wasfound that compared with those of activating TIG(A-TIG),and obvious refinement ofα-Mg grains was achieved and the finestα-Mggrains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating.In addition,thepenetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux.However,the welded jointswith TiO2+GNPs flux coating showed better mechanical properties(i.e.,ultimate tensile strength and microhardness)than those withTiO2+SiCp flux coating.Moreover,the generation of necking only occurred in the welded joints with TiO2+GNPs flux.
基金Supported by the State Key Laboratory of Mechanical Transmission Independent Research Fund(SKLMT-ZZKT-2012 MS 05)
文摘A fully flexure micro/nano transmission platform(MNTP)which has five degrees of freedom is designed on the basis of bridge type amplification mechanism.According to the kinematic theory and the elastic beam theory,the theoretical output displacement equation of the platform is derived,and then piezoelectric actuator(PZT)is calibrated.Meanwhile,a full closed-loop control strategy of the platform is established using the feedforward proportional-integral-derivative(PID)compound control algorithm based on the Preisach model.Moreover,the total transfer function of the micro positioning system is derived,and the calculation method of output signal is acquired.Finally,the theoretical output displacement is verified by finite element analysis(FEA)and positioning experiments.
基金National Natural Science Foundation of China(No.51205425)National Science&Technology Pillar Program during the 12th Five-Year Plan Period of China(No.2013BAF01B04)
文摘The transmission characteristics of gear drive can be improved with the use of novel tooth profiles.A theoretical study on tooth profile of the hypocycloid pinwheel transmission and contact analysis of gear pair based on finite element method(FEM) are carried out,respectively.The line contact between mated tooth surfaces becomes point contact according to a plus movement.Through loaded tooth contact analysis(LTCA),the contact stress and load distributions for the proposed hypocycloid pinwheel transmission and the traditional one are discussed.The analysis results show that the developed tooth surfaces have anticipatory point contact characteristics under loads and contact fatigue dangerous area locates around the ultimate contact position.
基金Supported by Guangdong Provincial Key-Area Research and Development Program(Grant No.2019B090917002).
文摘A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profle is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance.
基金National Key Research and Development Program of China(Grant No.2020YFB2009702)National Natural Science Foundation of China(Grant Nos.52075055,U21A20124 and 52111530069)Chongqing Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0780)。
文摘In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions.