Background In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying ...Background In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying follicular ovulation in avians is a complex biological process that remains unclear.Results Critical biochemical events involved in ovulation in domestic chickens(Gallus gallus) were evaluated by transcriptomics, proteomics, and in vitro assays. Comparative transcriptome analyses of the largest preovulatory follicle(F1) and postovulatory follicle(POF1) in continuous laying(CL) and intermittent laying(IL) chickens indicated the greatest difference between CL_F1 and IL_F1, with 950 differentially expressed genes(DEGs), and the smallest difference between CL_POF1 and IL_POF1, with 14 DEGs. Additionally, data-independent acquisition proteomics revealed 252 differentially abundant proteins between CL_F1 and IL_F1. Perivitelline membrane synthesis, steroid biosynthesis, lysosomes, and oxidative phosphorylation were identified as pivotal pathways contributing to ovulation regulation. In particular, the regulation of zona pellucida sperm-binding protein 3, plasminogen activator, cathepsin A, and lactate dehydrogenase A(LDHA) was shown to be essential for ovulation. Furthermore, the inhibition of LDHA decreased cell viability and promoted apoptosis of ovarian follicles in vitro.Conclusions This study reveals several important biochemical events involved in the process of ovulation, as well as crucial role of LDHA. These findings improve our understanding of ovulation and its regulatory mechanisms in avian species.展开更多
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability ...Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability to adapt to the local environment.SVs(≥50 bp)are widely distributed in the genome,mainly in the form of insertion(INS),mobile element insertion(MEI),deletion(DEL),duplication(DUP),inversion(INV),and translocation(TRA).While studies have investigated the SVs in pig genomes,genome-wide association studies(GWAS)-based on SVs have been rarely conducted.Results Here,we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools,with 53.95%of the SVs being reported for the first time.These high-quality SVs were used to recover the population genetic structure,confirming the accuracy of genotyping.Potential functional SV loci were then identified based on positional effects and breed stratification.Finally,GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions.We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7,with FKBP5 containing the most significant SV locus for almost all traits.In addition,we found several significant loci in intramuscular fat,abdominal circumference,heart weight,and liver weight,etc.Conclusions We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits,7 skeletal traits,and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.展开更多
Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilate...Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.展开更多
Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth an...Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.展开更多
Background Wool fibers are valuable materials for textile industry.Typical wool fibers are divided into medullated and non-medullated types,with the former generated from primary wool follicles and the latter by eithe...Background Wool fibers are valuable materials for textile industry.Typical wool fibers are divided into medullated and non-medullated types,with the former generated from primary wool follicles and the latter by either primary or secondary wool follicles.The medullated wool is a common wool type in the ancestors of fine wool sheep before breeding.The fine wool sheep have a non-medullated coat.However,the critical period determining the type of wool follicles is the embryonic stage,which limits the phenotypic observation and variant contrast,making both selection and studies of wool type variation fairly difficult.Results During the breeding of a modern fine(MF)wool sheep population with multiple-ovulation and embryo transfer technique,we serendipitously discovered lambs with ancestral-like coarse(ALC)wool.Whole-genome rese-quencing confirmed ALC wool lambs as a variant type from the MF wool population.We mapped the significantly associated methylation locus on chromosome 4 by using whole genome bisulfite sequencing signals,and in turn identified the SOSTDC1 gene as exons hypermethylated in ALC wool lambs compare to their half/full sibling MF wool lambs.Transcriptome sequencing found that SOSTDC1 was expressed dozens of times more in ALC wool lamb skin than that of MF and was at the top of all differentially expressed genes.An analogy with the transcriptome of coarse/fine wool breeds revealed that differentially expressed genes and enriched pathways at postnatal lamb stage in ALC/MF were highly similar to those at the embryonic stage in the former.Further experiments validated that the SOSTDC1 gene was specifically highly expressed in the nucleus of the dermal papilla of primary wool follicles.Conclusion In this study,we conducted genome-wide differential methylation site association analysis on differen-tial wool type trait,and located the only CpG locus that strongly associated with primary wool follicle development.Combined with transcriptome analysis,SOSTDC1 was identified as the only gene at this locus that was specifically overexpressed in the primary wool follicle stem cells of ALC wool lamb skin.The discovery of this key gene and its epigenetic regulation contributes to understanding the domestication and breeding of fine wool sheep.展开更多
Single-cell multi-Omics(SCM-Omics)and spatial multi-Omics(SM-Omics)technologies provide state-of-the-art methods for exploring the composition and function of cell types in tissues/organs.Since its emergence in 2009,s...Single-cell multi-Omics(SCM-Omics)and spatial multi-Omics(SM-Omics)technologies provide state-of-the-art methods for exploring the composition and function of cell types in tissues/organs.Since its emergence in 2009,single-cell RNA sequencing(scRNA-seq)has yielded many groundbreaking new discoveries.The combination of this method with the emergence and development of SM-Omics techniques has been a pioneering strategy in neuroscience,developmental biology,and cancer research,especially for assessing tumor heterogeneity and T-cell infiltration.In recent years,the application of these methods in the study of metabolic diseases has also increased.The emerging SCM-Omics and SM-Omics approaches allow the molecular and spatial analysis of cells to explore regulatory states and determine cell fate,and thus provide promising tools for unraveling heterogeneous metabolic processes and making them amenable to intervention.Here,we review the evolution of SCM-Omics and SM-Omics technologies,and describe the progress in the application of SCM-Omics and SM-Omics in metabolism-related diseases,including obesity,diabetes,nonalcoholic fatty liver disease(NAFLD)and cardiovascular disease(CVD).We also conclude that the application of SCM-Omics and SM-Omics approaches can help resolve the molecular mechanisms underlying the pathogenesis of metabolic diseases in the body and facilitate therapeutic measures for metabolism-related diseases.This review concludes with an overview of the current status of this emerging field and the outlook for its future.展开更多
Background Carcass traits are crucial indicators of meat production efficiency.However,the molecular regulatory mechanisms associated with these traits remain unclear.Results In this study,we conducted comprehensive t...Background Carcass traits are crucial indicators of meat production efficiency.However,the molecular regulatory mechanisms associated with these traits remain unclear.Results In this study,we conducted comprehensive transcriptomic and genomic analyses on 399 Tiannong partridge chickens to identify key genes and variants associated with carcass traits and to elucidate the underlying regulatory mechanisms.Based on association analyses with the elastic net(EN)model,we identified 12 candidate genes(AMY1A,AP3B2,CEBPG,EEF2,EIF4EBP1,FGFR1,FOXD3,GOLM1,LOC107052698,PABPC1,SERPINB6 and TBC1D16)for 4 carcass-related traits,namely live weight,dressed weight,eviscerated weight,and breast muscle weight.SERPINB6 was identified as the only overlapping gene by 3 analyses,EN model analysis,weighted gene co-expression network analysis and differential expression analysis.Cell-level experiments confirmed that SERPINB6 promotes the proliferation of chicken DF1 cells and primary myoblasts.Further expression genome-wide association study and association analysis indicated that rs317934171 is the critical site that enhances SERPINB6 expression.Furthermore,a dual-luciferase reporter assay proved that gga-miR-1615 targets the 3′UTR of SERPINB6.Conclusions Collectively,our findings reveal that SERPINB6 serves as a novel gene for chicken carcass traits by promoting fibroblast and myoblast proliferation.Additionally,the downstream variant rs317934171 regulates SERPINB6 expression.These results identify a new target gene and molecular marker for the molecular mechanisms of chicken carcass traits.展开更多
Tumor necrosis factorα(TNFα)exhibits diverse biological functions;however,its regulatory roles in myogenesis are not fully understood.In the present study,we explored the function of TNFαin myoblast proliferation,d...Tumor necrosis factorα(TNFα)exhibits diverse biological functions;however,its regulatory roles in myogenesis are not fully understood.In the present study,we explored the function of TNFαin myoblast proliferation,differentiation,migration,and myotube fusion in primary myoblasts and C2C12 cells.To this end,we constructed TNFαmuscle-conditional knockout(TNFα-CKO)mice and compared them with flox mice to assess the effects of TNFαknockout on skeletal muscles.Results indicated that TNFα-CKO mice displayed phenotypes such as accelerated muscle development,enhanced regenerative capacity,and improved exercise endurance compared to flox mice,with no significant differences observed in major visceral organs or skeletal structure.Using label-free proteomic analysis,we found that TNFα-CKO altered the distribution of several muscle development-related proteins,such as Hira,Casz1,Casp7,Arhgap10,Gas1,Diaph1,Map3k20,Cfl2,and Igf2,in the nucleus and cytoplasm.Gene set enrichment analysis(GSEA)further revealed that TNFαdeficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling.These findings suggest that TNFα-CKO positively regulates muscle growth and development,possibly via these newly identified targets and pathways.展开更多
The rapid development of biotechnology has facilitated our understanding of the biological functions of candidate genes for important economic traits in farm animals.Molecular breeding by gene editing has greatly revo...The rapid development of biotechnology has facilitated our understanding of the biological functions of candidate genes for important economic traits in farm animals.Molecular breeding by gene editing has greatly revolutionized the breeding of farm animals.Through gene editing and embryo manipulation,breeds with designed economic or disease-resistant traits can be readily generated.Along with this fast progress,the safety assessment of gene-edited farm animals has attracted public and regulatory attention.This review summarizes the research progress of gene editing in farm animals,focusing on performance improvement,disease resistance,bioreactors,animal welfare,and environmental friendliness.The limitations and future development of gene editing technology in farm animal breeding are also discussed.展开更多
Increasing prolificacy is an important aim in the pig industry. Regions associated with litter size have been revealed, but detailed molecular mechanisms are unclear. The Meishan pig is one of the most prolific breeds...Increasing prolificacy is an important aim in the pig industry. Regions associated with litter size have been revealed, but detailed molecular mechanisms are unclear. The Meishan pig is one of the most prolific breeds, with higher prolificacy than the Yorkshire pig, which exhibits high feeding efficiency and lean meat yield. The ovary is the key organ determining reproductive traits during pregnancy by synthesizing and secreting reproductive hormones essential for conceptus maintenance. In this comparative multi-omics study of the ovary transcriptome, proteome, and metabolome on day 49 of pregnancy, we aimed to identify genomic, proteomic, and metabolomic differences between the ovaries of Meishan and Yorkshire pigs to reveal potential molecular mechanisms conferring high prolificacy. Meishan pigs demonstrated general downregulation of steroid biosynthesis and butanoate metabolism in the ovary during mid-pregnancy at both transcriptome and proteome levels but exhibited higher serum cholesterol, estradiol, and progesterone levels than Yorkshire pigs. We also identified several single-nucleotide polymorphisms in the genes of the steroid hormone pathway associated with litter number, average birth weight, and total litter weight. Lower biosynthesis rates but elevated serum levels of reproductive hormones during mid-and late pregnancy are essential for the greater prolificacy of Meishan pigs.展开更多
Heterosis has been widely utilized in agricultural production.Despite over a century of extensive research,the underlying mechanisms of heterosis remain elusive.Most hypotheses and research have focused on the genetic...Heterosis has been widely utilized in agricultural production.Despite over a century of extensive research,the underlying mechanisms of heterosis remain elusive.Most hypotheses and research have focused on the genetic basis of heterosis.However,the potential role of gut microbiota in heterosis has been largely ignored.Here,we carefully design a crossbreeding experiment with two distinct broiler breeds and conduct 16S rRNA amplicon and transcriptome sequencing to investigate the synergistic role of gut microbiota and host genes in driving heterosis.We find that the breast muscle weight of hybrids exhibits a high heterosis,6.28%higher than the mid-parent value.A notable difference is observed in the composition and potential function of cecal microbiota between hybrids and their parents.Over 90%of differentially colonized microbiota and differentially expressed genes exhibit nonadditive patterns.Integrative analyses uncover associations between nonadditive genes and nonadditive microbiota,including a connection between the expression of cellular signaling pathways and metabolism-related genes and the abundance of Odor-ibacter,Oscillibacter,and Alistipes in hybrids.Moreover,higher abundances of these microbiota are related to better meat yield.In summary,these findings highlight the importance of gut microbiota in heterosis,serving as crucial factors that modulateheterosis expression in chickens.展开更多
CRISPR-Cas tools for mammalian genome editing typically rely on single Cas9 or Cas12a proteins.While type I CRISPR systems in Class I may offer greater specificity and versatility,they are not well-developed for genom...CRISPR-Cas tools for mammalian genome editing typically rely on single Cas9 or Cas12a proteins.While type I CRISPR systems in Class I may offer greater specificity and versatility,they are not well-developed for genome editing.Here,we present an alternative type I-C CRISPR system from Desulfovibrio vulgaris(Dvu)for efficient and precise genome editing in mammalian cells and animals.We optimized the Dvu type I-C editing complex to generate precise deletions at multiple loci in various cell lines and pig primary fibroblast cells using a paired PAM-in crRNA strategy.These edited pig cells can serve as donors for generating transgenic cloned piglets.The Dvu type I-C editor also enabled precise large fragment replacements with homology-directed repair.Additionally,we adapted the Dvu-Cascade effector for cytosine and adenine base editing,developing Dvu-CBE and Dvu-ABE systems.These systems efficiently induced C-to-T and A-to-G substitutions in human genes without double-strand breaks.Off-target analysis confirmed the high specificity of the Dvu type I-C editor.Our findings demonstrate the Dvu type I-C editor′s potential for diverse mammalian genome editing applications,including deletions,fragment replacement,and base editing,with high efficiency and specificity for biomedicine and agriculture.展开更多
In recent years,the global incidence of hepatitis E virus(HEV)has been rising,leading to increased morbidity and mortality associated with hepatitis.Cas13,a CRISPR effector,shows promise as an antiviral agent against ...In recent years,the global incidence of hepatitis E virus(HEV)has been rising,leading to increased morbidity and mortality associated with hepatitis.Cas13,a CRISPR effector,shows promise as an antiviral agent against singlestranded RNA viruses.Cas13d,a type VI-D effector,exhibits higher efficiency in suppressing RNA viruses compared to other type VI variants.However,its in vivo activity against RNA viruses in mammals remains unknown.展开更多
Copy number variations(CNVs)range in size from 50 base pairs(bp)to several megabases(Mb)and encompass various types of structural variations,such as insertions,deletions,duplications,and complex multiallelic events(Ma...Copy number variations(CNVs)range in size from 50 base pairs(bp)to several megabases(Mb)and encompass various types of structural variations,such as insertions,deletions,duplications,and complex multiallelic events(MacDonald et al.,2014).These genomic alterations modulate phenotype by altering gene dosage and transcriptional regulation,and are key drivers of biological evolution and determinants of genetic diversity and phenotypic variation.In recent years,CNVs have been detected in the genomes of various livestock species(Yuan et al.,2021;Chen et al.,2022).Upadhyay et al.(2017)conducted a comprehensive analysis of CNV distribution in the European cattle genome and determined that the Kit gene is associated with color-sidedness in English longhorn cattle.Another study presented extensive genome-wide information on CNVs in wild,commercial,and local chicken breeds to gain an integrated understanding of the domestication process and exclusively identified the genes involved(Chen et al.,2022).展开更多
Ovarian mesenchymal cells(oMCs)constitute a distinct microenvironment that supports folliculogenesis under physiological conditions.Supplementation of exogenous non-ovarian mesenchymal-related cells has been reported ...Ovarian mesenchymal cells(oMCs)constitute a distinct microenvironment that supports folliculogenesis under physiological conditions.Supplementation of exogenous non-ovarian mesenchymal-related cells has been reported to be an efficient approach to improve ovarian functions.However,the development and cellular and molecular characteristics of endogenous oMCs remain largely unexplored.In this study,we surveyed the single-cell transcriptomic landscape to dissect the cellular and molecular changes associated with the aging of oMCs in mice.Our results showed that the oMCs were composed of five ovarian differentiatedMC(odMC)populations and one ovarian mesenchymal progenitor(oMP)cell population.These cells could differentiate into various odMCs via an oMP-derived route to construct the ovarian stroma structures.Comparative analysis revealed that ovarian aging was associated with decreased quantity of oMP cells and reduced quality of odMCs.Based on the findings of bioinformatics analysis,we designed different strategies involving supplementation with young oMCs to examine their effects on female fertility and health.Our functional investigations revealed that oMCs supplementation prior to ovarian senescence was the optimal method to improve female fertility and extend the reproductive lifespan of aged females in the longterm.展开更多
Efficient immune responses rely on the proper differentiation of CD8^(+)T cells into effector and memory cells.Here,we show a critical requirement of N^6-Methyladenosine(m^(6)A)methyltransferase Mettl3 during CD8^(+)T...Efficient immune responses rely on the proper differentiation of CD8^(+)T cells into effector and memory cells.Here,we show a critical requirement of N^6-Methyladenosine(m^(6)A)methyltransferase Mettl3 during CD8^(+)T cell responses upon acute viral infection.Conditional deletion of Mettl3 in CD8^(+)T cells impairs effector expansion and terminal differentiation in an m^(6)A-dependent manner,subsequently affecting memory formation and the secondary response of CD8^(+)T cells.Our combined RNA-seq and m^(6)AmiCLIP-seq analyses reveal that Mettl3 deficiency broadly impacts the expression of cell cycle and transcriptional regulators.Remarkably,Mettl3 binds to the Tbx21 transcript and stabilizes it,promoting effector differentiation of CD8^(+)T cells.Moreover,ectopic expression of T-bet partially restores the defects in CD8^(+)T cell differentiation in the absence of Mettl3.Thus,our study highlights the role of Mettl3 in regulating multiple target genes in an m^(6)A-dependent manner and underscores the importance of m^(6)A modification during CD8^(+)T cell response.展开更多
Volatile organic compounds(VOCs)play key roles in plant–plant communication,especially in response to pest attack.E-2-hexenal is an important component of VOCs,but it is unclear whether it can induce endog-enous plan...Volatile organic compounds(VOCs)play key roles in plant–plant communication,especially in response to pest attack.E-2-hexenal is an important component of VOCs,but it is unclear whether it can induce endog-enous plant resistance to insects.Here,we show that E-2-hexenal activates early signaling events in Ara-bidopsis(Arabidopsis thaliana)mesophyll cells,including an H2O2 burst at the plasma membrane,the directedflow of calcium ions,and an increase in cytosolic calcium concentration.Treatment of wild-type Arabidopsis plants with E-2-hexenal increases their resistance when challenged with the diamond-back moth Plutella xylostella L.,and this phenomenon is largely lost in the wrky46 mutant.Mechanistically,E-2-hexenal induces the expression of WRKY46 and MYC2,and the physical interaction of their encoded proteins was verified by yeast two-hybrid,firefly luciferase complementation imaging,and in vitro pull-down assays.The WRKY46–MYC2 complex directly binds to the promoter of RBOHD to promote its expres-sion,as demonstrated by luciferase reporter,yeast one-hybrid,chromatin immunoprecipitation,and electrophoretic mobility shift assays.This module also positively regulates the expression of E-2-hexenal-induced naringenin biosynthesis genes(TT4 and CHIL)and the accumulation of totalflavonoids,thereby modulating plant tolerance to insects.Together,our results highlight an important role for the WRKY46–MYC2 module in the E-2-hexenal-induced defense response of Arabidopsis,providing new in-sights into the mechanisms by which VOCs trigger plant defense responses.展开更多
Porcine reproductive and respiratory syndrome(PRRS)caused by PRRS virus(PRRSV)has been regarded as a persistent challenge for the swine farms worldwide.microRNAs(miRNAs)play key roles in regulating almost every import...Porcine reproductive and respiratory syndrome(PRRS)caused by PRRS virus(PRRSV)has been regarded as a persistent challenge for the swine farms worldwide.microRNAs(miRNAs)play key roles in regulating almost every important biological process,including virus-host interaction.In this study,we found that miR-204 was highly expressed in cells that were not permissive to PRRSV infection compared with cells susceptible to PRRSV infection.Subsequently,we demonstrated that overexpression of miR-204 significantly inhibited PRRSV replication in porcine alveolar macrophages(PAMs).Through bioinformatic analysis,we found that there existed a potential binding site of miR-204 on the 30UTR of microtubule associated protein 1 light chain 3B(MAP1LC3B,LC3B),a hallmark of autophagy.Applying experiments including luciferase reporter assay and UV cross-linking and immunoprecipitation(CLIP)assay,we demonstrated that miR-204 directly targeted LC3B,thereby downregulating autophagy.Meanwhile,we investigated the interplay between autophagy and PRRSV replication in PAMs,confirming that PRRSV infection induces autophagy,which in turn facilitates viral replication.Overall,we verify that miR-204 suppresses PRRSV replication via inhibiting LC3B-mediated autophagy in PAMs.These findings will provide a novel potential approach for us to develop antiviral therapeutic agents and controlling measures for future PRRSV outbreaks.展开更多
基金supported by the National Key Research and Development Program of China (2022YFD1600902)Key Research and Development Program of Shandong (2022LZGC013)China Agriculture Research System (CARS-40)。
文摘Background In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying follicular ovulation in avians is a complex biological process that remains unclear.Results Critical biochemical events involved in ovulation in domestic chickens(Gallus gallus) were evaluated by transcriptomics, proteomics, and in vitro assays. Comparative transcriptome analyses of the largest preovulatory follicle(F1) and postovulatory follicle(POF1) in continuous laying(CL) and intermittent laying(IL) chickens indicated the greatest difference between CL_F1 and IL_F1, with 950 differentially expressed genes(DEGs), and the smallest difference between CL_POF1 and IL_POF1, with 14 DEGs. Additionally, data-independent acquisition proteomics revealed 252 differentially abundant proteins between CL_F1 and IL_F1. Perivitelline membrane synthesis, steroid biosynthesis, lysosomes, and oxidative phosphorylation were identified as pivotal pathways contributing to ovulation regulation. In particular, the regulation of zona pellucida sperm-binding protein 3, plasminogen activator, cathepsin A, and lactate dehydrogenase A(LDHA) was shown to be essential for ovulation. Furthermore, the inhibition of LDHA decreased cell viability and promoted apoptosis of ovarian follicles in vitro.Conclusions This study reveals several important biochemical events involved in the process of ovulation, as well as crucial role of LDHA. These findings improve our understanding of ovulation and its regulatory mechanisms in avian species.
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
基金supported by the National Key R&D Program of China(2021YFD1301101)National Swine Industry Technology System(CARS-35)Agricultural Science and Technology Innovation Program(ASTIP-IAS02)。
文摘Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability to adapt to the local environment.SVs(≥50 bp)are widely distributed in the genome,mainly in the form of insertion(INS),mobile element insertion(MEI),deletion(DEL),duplication(DUP),inversion(INV),and translocation(TRA).While studies have investigated the SVs in pig genomes,genome-wide association studies(GWAS)-based on SVs have been rarely conducted.Results Here,we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools,with 53.95%of the SVs being reported for the first time.These high-quality SVs were used to recover the population genetic structure,confirming the accuracy of genotyping.Potential functional SV loci were then identified based on positional effects and breed stratification.Finally,GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions.We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7,with FKBP5 containing the most significant SV locus for almost all traits.In addition,we found several significant loci in intramuscular fat,abdominal circumference,heart weight,and liver weight,etc.Conclusions We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits,7 skeletal traits,and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.
基金supported by the Beijing Featured Livestock and Poultry Genetic Resources Preservation Project,China(202203310002)China Agriculture Research System of MOF and MARA(CARS40)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIPIAS04)the Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(236Z6602G)。
文摘Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.
基金supported by the National Key Research and Development Program of China(2022YFF1000204)the National Natural Science Foundation of China(32102535)the Key Research and Development Program of Hainan province(ZDYF2023XDNY036)。
文摘Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.
基金the programs of National Key R&D Program of China(2021YFF1000700)National Natural Science Foundation of China(32002145)+1 种基金the Major Project for Cultivation Technology of New Varieties of Genetically Modified Organisms of the Ministry of Agriculture(grant Nos.2016ZX08008-001 and 2013ZX08008-001)Ningxia Agricultural Breeding Project(NXNYYZ2015010).
文摘Background Wool fibers are valuable materials for textile industry.Typical wool fibers are divided into medullated and non-medullated types,with the former generated from primary wool follicles and the latter by either primary or secondary wool follicles.The medullated wool is a common wool type in the ancestors of fine wool sheep before breeding.The fine wool sheep have a non-medullated coat.However,the critical period determining the type of wool follicles is the embryonic stage,which limits the phenotypic observation and variant contrast,making both selection and studies of wool type variation fairly difficult.Results During the breeding of a modern fine(MF)wool sheep population with multiple-ovulation and embryo transfer technique,we serendipitously discovered lambs with ancestral-like coarse(ALC)wool.Whole-genome rese-quencing confirmed ALC wool lambs as a variant type from the MF wool population.We mapped the significantly associated methylation locus on chromosome 4 by using whole genome bisulfite sequencing signals,and in turn identified the SOSTDC1 gene as exons hypermethylated in ALC wool lambs compare to their half/full sibling MF wool lambs.Transcriptome sequencing found that SOSTDC1 was expressed dozens of times more in ALC wool lamb skin than that of MF and was at the top of all differentially expressed genes.An analogy with the transcriptome of coarse/fine wool breeds revealed that differentially expressed genes and enriched pathways at postnatal lamb stage in ALC/MF were highly similar to those at the embryonic stage in the former.Further experiments validated that the SOSTDC1 gene was specifically highly expressed in the nucleus of the dermal papilla of primary wool follicles.Conclusion In this study,we conducted genome-wide differential methylation site association analysis on differen-tial wool type trait,and located the only CpG locus that strongly associated with primary wool follicle development.Combined with transcriptome analysis,SOSTDC1 was identified as the only gene at this locus that was specifically overexpressed in the primary wool follicle stem cells of ALC wool lamb skin.The discovery of this key gene and its epigenetic regulation contributes to understanding the domestication and breeding of fine wool sheep.
基金supported by the National Key Research and Development Program of China(Program No.:2019YFA0904300)Shenzhen Science and Technology Program(Program No.:JCYJ20220530150404009)the Guangdong Basic and Applied Basic Research Foundation(Grant No.:2022A1515110608).
文摘Single-cell multi-Omics(SCM-Omics)and spatial multi-Omics(SM-Omics)technologies provide state-of-the-art methods for exploring the composition and function of cell types in tissues/organs.Since its emergence in 2009,single-cell RNA sequencing(scRNA-seq)has yielded many groundbreaking new discoveries.The combination of this method with the emergence and development of SM-Omics techniques has been a pioneering strategy in neuroscience,developmental biology,and cancer research,especially for assessing tumor heterogeneity and T-cell infiltration.In recent years,the application of these methods in the study of metabolic diseases has also increased.The emerging SCM-Omics and SM-Omics approaches allow the molecular and spatial analysis of cells to explore regulatory states and determine cell fate,and thus provide promising tools for unraveling heterogeneous metabolic processes and making them amenable to intervention.Here,we review the evolution of SCM-Omics and SM-Omics technologies,and describe the progress in the application of SCM-Omics and SM-Omics in metabolism-related diseases,including obesity,diabetes,nonalcoholic fatty liver disease(NAFLD)and cardiovascular disease(CVD).We also conclude that the application of SCM-Omics and SM-Omics approaches can help resolve the molecular mechanisms underlying the pathogenesis of metabolic diseases in the body and facilitate therapeutic measures for metabolism-related diseases.This review concludes with an overview of the current status of this emerging field and the outlook for its future.
基金supported by grants from the Key Projects of National Natural Science Foundation of China (No. 32230101)the Project of Qingyuan Science and Technology (2020A01, 2021SJXM011)+1 种基金the Agriculture Research System (CARS-41)the Core Breed Source Research Project JBGS (2021) 107
文摘Background Carcass traits are crucial indicators of meat production efficiency.However,the molecular regulatory mechanisms associated with these traits remain unclear.Results In this study,we conducted comprehensive transcriptomic and genomic analyses on 399 Tiannong partridge chickens to identify key genes and variants associated with carcass traits and to elucidate the underlying regulatory mechanisms.Based on association analyses with the elastic net(EN)model,we identified 12 candidate genes(AMY1A,AP3B2,CEBPG,EEF2,EIF4EBP1,FGFR1,FOXD3,GOLM1,LOC107052698,PABPC1,SERPINB6 and TBC1D16)for 4 carcass-related traits,namely live weight,dressed weight,eviscerated weight,and breast muscle weight.SERPINB6 was identified as the only overlapping gene by 3 analyses,EN model analysis,weighted gene co-expression network analysis and differential expression analysis.Cell-level experiments confirmed that SERPINB6 promotes the proliferation of chicken DF1 cells and primary myoblasts.Further expression genome-wide association study and association analysis indicated that rs317934171 is the critical site that enhances SERPINB6 expression.Furthermore,a dual-luciferase reporter assay proved that gga-miR-1615 targets the 3′UTR of SERPINB6.Conclusions Collectively,our findings reveal that SERPINB6 serves as a novel gene for chicken carcass traits by promoting fibroblast and myoblast proliferation.Additionally,the downstream variant rs317934171 regulates SERPINB6 expression.These results identify a new target gene and molecular marker for the molecular mechanisms of chicken carcass traits.
基金Xizang Major Science and Technology Project(XZ202101ZD0005N)Yunnan Major Science and Technology Project(202302AE090015)+1 种基金National Key R&D Program of China(2023ZD04044-04)National Natural Science Foundation of China(32060736)。
文摘Tumor necrosis factorα(TNFα)exhibits diverse biological functions;however,its regulatory roles in myogenesis are not fully understood.In the present study,we explored the function of TNFαin myoblast proliferation,differentiation,migration,and myotube fusion in primary myoblasts and C2C12 cells.To this end,we constructed TNFαmuscle-conditional knockout(TNFα-CKO)mice and compared them with flox mice to assess the effects of TNFαknockout on skeletal muscles.Results indicated that TNFα-CKO mice displayed phenotypes such as accelerated muscle development,enhanced regenerative capacity,and improved exercise endurance compared to flox mice,with no significant differences observed in major visceral organs or skeletal structure.Using label-free proteomic analysis,we found that TNFα-CKO altered the distribution of several muscle development-related proteins,such as Hira,Casz1,Casp7,Arhgap10,Gas1,Diaph1,Map3k20,Cfl2,and Igf2,in the nucleus and cytoplasm.Gene set enrichment analysis(GSEA)further revealed that TNFαdeficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling.These findings suggest that TNFα-CKO positively regulates muscle growth and development,possibly via these newly identified targets and pathways.
基金supported by the National Key Research and Development Program of China(2021YFA0805900)the 2020 Research Program of Sanya Yazhou Bay Science and Technology City(202002011)+1 种基金the National Natural Science Foundation of China(32002180)the Key Research and Development Program of Hainan Province,China(ZDYF2021SHFZ230)
文摘The rapid development of biotechnology has facilitated our understanding of the biological functions of candidate genes for important economic traits in farm animals.Molecular breeding by gene editing has greatly revolutionized the breeding of farm animals.Through gene editing and embryo manipulation,breeds with designed economic or disease-resistant traits can be readily generated.Along with this fast progress,the safety assessment of gene-edited farm animals has attracted public and regulatory attention.This review summarizes the research progress of gene editing in farm animals,focusing on performance improvement,disease resistance,bioreactors,animal welfare,and environmental friendliness.The limitations and future development of gene editing technology in farm animal breeding are also discussed.
基金supported by the National Natural Science Foundation of China (31972541 and 31830090)the Central Public-interest Scientific Institution Basal Research Fund, China (Y2021XK20)+1 种基金the Special Construction Project Fund for Shandong Province Taishan Scholars, Chinathe Agricultural Science and Technology Innovation Program, China (ASTIP-IAS05)。
文摘Increasing prolificacy is an important aim in the pig industry. Regions associated with litter size have been revealed, but detailed molecular mechanisms are unclear. The Meishan pig is one of the most prolific breeds, with higher prolificacy than the Yorkshire pig, which exhibits high feeding efficiency and lean meat yield. The ovary is the key organ determining reproductive traits during pregnancy by synthesizing and secreting reproductive hormones essential for conceptus maintenance. In this comparative multi-omics study of the ovary transcriptome, proteome, and metabolome on day 49 of pregnancy, we aimed to identify genomic, proteomic, and metabolomic differences between the ovaries of Meishan and Yorkshire pigs to reveal potential molecular mechanisms conferring high prolificacy. Meishan pigs demonstrated general downregulation of steroid biosynthesis and butanoate metabolism in the ovary during mid-pregnancy at both transcriptome and proteome levels but exhibited higher serum cholesterol, estradiol, and progesterone levels than Yorkshire pigs. We also identified several single-nucleotide polymorphisms in the genes of the steroid hormone pathway associated with litter number, average birth weight, and total litter weight. Lower biosynthesis rates but elevated serum levels of reproductive hormones during mid-and late pregnancy are essential for the greater prolificacy of Meishan pigs.
基金This work was supported by the National Key Research and Development Program of China(2022YFF1000204)the National Natural Science Foundation of China(32102535)+1 种基金the Key Research and Development Program of Hainan province(ZDYF2023XDNY036)the Guangxi Science and Technology Major Program(GK AA23062049).
文摘Heterosis has been widely utilized in agricultural production.Despite over a century of extensive research,the underlying mechanisms of heterosis remain elusive.Most hypotheses and research have focused on the genetic basis of heterosis.However,the potential role of gut microbiota in heterosis has been largely ignored.Here,we carefully design a crossbreeding experiment with two distinct broiler breeds and conduct 16S rRNA amplicon and transcriptome sequencing to investigate the synergistic role of gut microbiota and host genes in driving heterosis.We find that the breast muscle weight of hybrids exhibits a high heterosis,6.28%higher than the mid-parent value.A notable difference is observed in the composition and potential function of cecal microbiota between hybrids and their parents.Over 90%of differentially colonized microbiota and differentially expressed genes exhibit nonadditive patterns.Integrative analyses uncover associations between nonadditive genes and nonadditive microbiota,including a connection between the expression of cellular signaling pathways and metabolism-related genes and the abundance of Odor-ibacter,Oscillibacter,and Alistipes in hybrids.Moreover,higher abundances of these microbiota are related to better meat yield.In summary,these findings highlight the importance of gut microbiota in heterosis,serving as crucial factors that modulateheterosis expression in chickens.
基金funded by the National Key R&D Program of China(2021YFA0805900,2023YFF1000200,2023YFF1000900,and 2023YFC3402004)the China Postdoctoral Science Foundation(2021M703521).
文摘CRISPR-Cas tools for mammalian genome editing typically rely on single Cas9 or Cas12a proteins.While type I CRISPR systems in Class I may offer greater specificity and versatility,they are not well-developed for genome editing.Here,we present an alternative type I-C CRISPR system from Desulfovibrio vulgaris(Dvu)for efficient and precise genome editing in mammalian cells and animals.We optimized the Dvu type I-C editing complex to generate precise deletions at multiple loci in various cell lines and pig primary fibroblast cells using a paired PAM-in crRNA strategy.These edited pig cells can serve as donors for generating transgenic cloned piglets.The Dvu type I-C editor also enabled precise large fragment replacements with homology-directed repair.Additionally,we adapted the Dvu-Cascade effector for cytosine and adenine base editing,developing Dvu-CBE and Dvu-ABE systems.These systems efficiently induced C-to-T and A-to-G substitutions in human genes without double-strand breaks.Off-target analysis confirmed the high specificity of the Dvu type I-C editor.Our findings demonstrate the Dvu type I-C editor′s potential for diverse mammalian genome editing applications,including deletions,fragment replacement,and base editing,with high efficiency and specificity for biomedicine and agriculture.
基金supported by the National Transgenic Major Program of China(No.2016ZX08009-003-006)Plan 111(No.B12008).
文摘In recent years,the global incidence of hepatitis E virus(HEV)has been rising,leading to increased morbidity and mortality associated with hepatitis.Cas13,a CRISPR effector,shows promise as an antiviral agent against singlestranded RNA viruses.Cas13d,a type VI-D effector,exhibits higher efficiency in suppressing RNA viruses compared to other type VI variants.However,its in vivo activity against RNA viruses in mammals remains unknown.
基金the National Natural Science Foundation of China(No.32272851)the China Agriculture Research System of MOF and MARA(No.CARS-38)。
文摘Copy number variations(CNVs)range in size from 50 base pairs(bp)to several megabases(Mb)and encompass various types of structural variations,such as insertions,deletions,duplications,and complex multiallelic events(MacDonald et al.,2014).These genomic alterations modulate phenotype by altering gene dosage and transcriptional regulation,and are key drivers of biological evolution and determinants of genetic diversity and phenotypic variation.In recent years,CNVs have been detected in the genomes of various livestock species(Yuan et al.,2021;Chen et al.,2022).Upadhyay et al.(2017)conducted a comprehensive analysis of CNV distribution in the European cattle genome and determined that the Kit gene is associated with color-sidedness in English longhorn cattle.Another study presented extensive genome-wide information on CNVs in wild,commercial,and local chicken breeds to gain an integrated understanding of the domestication process and exclusively identified the genes involved(Chen et al.,2022).
基金supported by the National Key Research and Development Program of China (2022YFC2703800)the National Natural Science Foundation of China (82230051)the 2115 Talent Development Program of China Agricultural University (1021-00109022)。
文摘Ovarian mesenchymal cells(oMCs)constitute a distinct microenvironment that supports folliculogenesis under physiological conditions.Supplementation of exogenous non-ovarian mesenchymal-related cells has been reported to be an efficient approach to improve ovarian functions.However,the development and cellular and molecular characteristics of endogenous oMCs remain largely unexplored.In this study,we surveyed the single-cell transcriptomic landscape to dissect the cellular and molecular changes associated with the aging of oMCs in mice.Our results showed that the oMCs were composed of five ovarian differentiatedMC(odMC)populations and one ovarian mesenchymal progenitor(oMP)cell population.These cells could differentiate into various odMCs via an oMP-derived route to construct the ovarian stroma structures.Comparative analysis revealed that ovarian aging was associated with decreased quantity of oMP cells and reduced quality of odMCs.Based on the findings of bioinformatics analysis,we designed different strategies involving supplementation with young oMCs to examine their effects on female fertility and health.Our functional investigations revealed that oMCs supplementation prior to ovarian senescence was the optimal method to improve female fertility and extend the reproductive lifespan of aged females in the longterm.
基金the National Natural Science Foundation of China(32130039,31970831,81970541,31960151,and 31630038)the National Key Research and Development Program of China(2017YFA0104401)+3 种基金the Pinduoduo-China Agricultural University Research Fund(PC2023B01011)Frontiers Science Center for Molecular Design Breeding(MOE),Chinese Universities Scientific Fund(2022TC030 and 2021TC087)the Project for Extramural Scientists of State Key Laboratory of Agrobiotechnology from China Agricultural University(2021SKLAB6-3 and 2021SKLAB6-4)the Collaborative Innovation Center of Chinese Ministry of Education(2020-39)。
文摘Efficient immune responses rely on the proper differentiation of CD8^(+)T cells into effector and memory cells.Here,we show a critical requirement of N^6-Methyladenosine(m^(6)A)methyltransferase Mettl3 during CD8^(+)T cell responses upon acute viral infection.Conditional deletion of Mettl3 in CD8^(+)T cells impairs effector expansion and terminal differentiation in an m^(6)A-dependent manner,subsequently affecting memory formation and the secondary response of CD8^(+)T cells.Our combined RNA-seq and m^(6)AmiCLIP-seq analyses reveal that Mettl3 deficiency broadly impacts the expression of cell cycle and transcriptional regulators.Remarkably,Mettl3 binds to the Tbx21 transcript and stabilizes it,promoting effector differentiation of CD8^(+)T cells.Moreover,ectopic expression of T-bet partially restores the defects in CD8^(+)T cell differentiation in the absence of Mettl3.Thus,our study highlights the role of Mettl3 in regulating multiple target genes in an m^(6)A-dependent manner and underscores the importance of m^(6)A modification during CD8^(+)T cell response.
基金supported by the National Natural Science Foundation of China (31270655).
文摘Volatile organic compounds(VOCs)play key roles in plant–plant communication,especially in response to pest attack.E-2-hexenal is an important component of VOCs,but it is unclear whether it can induce endog-enous plant resistance to insects.Here,we show that E-2-hexenal activates early signaling events in Ara-bidopsis(Arabidopsis thaliana)mesophyll cells,including an H2O2 burst at the plasma membrane,the directedflow of calcium ions,and an increase in cytosolic calcium concentration.Treatment of wild-type Arabidopsis plants with E-2-hexenal increases their resistance when challenged with the diamond-back moth Plutella xylostella L.,and this phenomenon is largely lost in the wrky46 mutant.Mechanistically,E-2-hexenal induces the expression of WRKY46 and MYC2,and the physical interaction of their encoded proteins was verified by yeast two-hybrid,firefly luciferase complementation imaging,and in vitro pull-down assays.The WRKY46–MYC2 complex directly binds to the promoter of RBOHD to promote its expres-sion,as demonstrated by luciferase reporter,yeast one-hybrid,chromatin immunoprecipitation,and electrophoretic mobility shift assays.This module also positively regulates the expression of E-2-hexenal-induced naringenin biosynthesis genes(TT4 and CHIL)and the accumulation of totalflavonoids,thereby modulating plant tolerance to insects.Together,our results highlight an important role for the WRKY46–MYC2 module in the E-2-hexenal-induced defense response of Arabidopsis,providing new in-sights into the mechanisms by which VOCs trigger plant defense responses.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31630076),Chinathe National Major Special Project on New Varieties Cultivation for Transgenic Organisms(grant no.2016ZX08009-003-006),China.
文摘Porcine reproductive and respiratory syndrome(PRRS)caused by PRRS virus(PRRSV)has been regarded as a persistent challenge for the swine farms worldwide.microRNAs(miRNAs)play key roles in regulating almost every important biological process,including virus-host interaction.In this study,we found that miR-204 was highly expressed in cells that were not permissive to PRRSV infection compared with cells susceptible to PRRSV infection.Subsequently,we demonstrated that overexpression of miR-204 significantly inhibited PRRSV replication in porcine alveolar macrophages(PAMs).Through bioinformatic analysis,we found that there existed a potential binding site of miR-204 on the 30UTR of microtubule associated protein 1 light chain 3B(MAP1LC3B,LC3B),a hallmark of autophagy.Applying experiments including luciferase reporter assay and UV cross-linking and immunoprecipitation(CLIP)assay,we demonstrated that miR-204 directly targeted LC3B,thereby downregulating autophagy.Meanwhile,we investigated the interplay between autophagy and PRRSV replication in PAMs,confirming that PRRSV infection induces autophagy,which in turn facilitates viral replication.Overall,we verify that miR-204 suppresses PRRSV replication via inhibiting LC3B-mediated autophagy in PAMs.These findings will provide a novel potential approach for us to develop antiviral therapeutic agents and controlling measures for future PRRSV outbreaks.