A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed...A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow.展开更多
Experiments of biomass pyrolysis were carried out in a fluidized bed, and dynamic signals of pressure and temperature were recorded. Correlation dimension was employed to characterize the chaotic behavior of pressure ...Experiments of biomass pyrolysis were carried out in a fluidized bed, and dynamic signals of pressure and temperature were recorded. Correlation dimension was employed to characterize the chaotic behavior of pressure and temperature signals. Both pressure and temperature signals exhibit chaotic behavior, and the chaotic behavior of temperature signals is always weaker than that of pressure signals. Chaos transfer theory was advanced to explain the above phenomena. The discussion on the algorithm of the correlation dimension shows that the distance definition based on rhombic neighborhood is a better choice than the traditional one based on spherical neighborhood. The former provides a satisfactory result in a much shorter time.展开更多
A modified diffusion flux model (DFM) was developed to analyze turbulent multi-dimensional gas-particle two-phase flows. In the model, the solid particles move in a modified acceleration field, g′′ , which include...A modified diffusion flux model (DFM) was developed to analyze turbulent multi-dimensional gas-particle two-phase flows. In the model, the solid particles move in a modified acceleration field, g′′ , which includes the effects of various forces on the particles as if all the forces have the same effect on the particles as the gravity. The accelerations due to various forces are then taken into account in the calcula- tion of the diffusion velocities of the solid particles in the gas-particle two-phase flow. The DFM was used to numerically simulate the gas-solid two-phase flow behind a vertical backward-facing step. The numerical simulation compared well with experimental data and numerical results using both the k-ε-Ap and k-ε-kp two- fluid models available in the literature. The comparison shows that the modified diffusion flux model correctly simulates the turbulent gas-particle two-phase flow.展开更多
A hot-wire/hot-film anemometer (HWA) was used here to measure the vorticity in turbulent flows. The velocity components and their partial derivatives were simultaneously measured with a new 6-sensor hot-wire (HW) prob...A hot-wire/hot-film anemometer (HWA) was used here to measure the vorticity in turbulent flows. The velocity components and their partial derivatives were simultaneously measured with a new 6-sensor hot-wire (HW) probe assuming ideal yaw and pitch factors with Jorgensen's expression and Taylor's hypothesis to analyze the data. The accurate 6-sensor hot-wire probe results for the velocity field were used to determine the velocity gradients and, therefore, the vorticity vector field. The data was measured in an isothermal model of a tangentially fired furnace. The experimental results in the tangentially fired furnace agree with numerical results.展开更多
基金Special Funds for Major State Basic Research Projects of China(G1999022200)
文摘A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow.
基金Supported by the National Natural Science Foundation of China(No.59776036)
文摘Experiments of biomass pyrolysis were carried out in a fluidized bed, and dynamic signals of pressure and temperature were recorded. Correlation dimension was employed to characterize the chaotic behavior of pressure and temperature signals. Both pressure and temperature signals exhibit chaotic behavior, and the chaotic behavior of temperature signals is always weaker than that of pressure signals. Chaos transfer theory was advanced to explain the above phenomena. The discussion on the algorithm of the correlation dimension shows that the distance definition based on rhombic neighborhood is a better choice than the traditional one based on spherical neighborhood. The former provides a satisfactory result in a much shorter time.
基金Supported by the Special Funds for the National Key Basic Research and Development (973) Program of China (No.2002CB211604)
文摘A modified diffusion flux model (DFM) was developed to analyze turbulent multi-dimensional gas-particle two-phase flows. In the model, the solid particles move in a modified acceleration field, g′′ , which includes the effects of various forces on the particles as if all the forces have the same effect on the particles as the gravity. The accelerations due to various forces are then taken into account in the calcula- tion of the diffusion velocities of the solid particles in the gas-particle two-phase flow. The DFM was used to numerically simulate the gas-solid two-phase flow behind a vertical backward-facing step. The numerical simulation compared well with experimental data and numerical results using both the k-ε-Ap and k-ε-kp two- fluid models available in the literature. The comparison shows that the modified diffusion flux model correctly simulates the turbulent gas-particle two-phase flow.
基金Supported by the Machinery Industry Development Foundation of China(No.95JB1101)the Post-Doctoral Science Foundation of China
文摘A hot-wire/hot-film anemometer (HWA) was used here to measure the vorticity in turbulent flows. The velocity components and their partial derivatives were simultaneously measured with a new 6-sensor hot-wire (HW) probe assuming ideal yaw and pitch factors with Jorgensen's expression and Taylor's hypothesis to analyze the data. The accurate 6-sensor hot-wire probe results for the velocity field were used to determine the velocity gradients and, therefore, the vorticity vector field. The data was measured in an isothermal model of a tangentially fired furnace. The experimental results in the tangentially fired furnace agree with numerical results.