期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Effects of Different Calcining Temperatures on the Properties of Ceramsite Prepared by High-carbon Gasification Slag
1
作者 WU Feng LI Hui +1 位作者 LI Taizhi MA Xudong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期292-298,共7页
The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential ... The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential thermogravimetr,differential scanning calorimetry-Fourier transform infrared,and mercury intrusion porosimetry,respectively.The experimental results show that the ceramsite undergoes two weightless stages in the calcining process.With the increase in the calcining temperature,a large number of pores are formed inside the ceramsite,its structure becomes denser,but the calcining temperature band of the ceramsite becomes narrow.The crystalline phase of the ceramsite changes at different calcining temperatures and the mineral phase changes from the earlieralbite,quartz,oligoclase,hematite,etc,to a silica-aluminum-rich glass phase.The 1130℃ is a more suitable calcining temperature,and the cylinder compressive strength of ceramics is 11.59 MPa,the packing density,apparent density,porosity,and water absorption are 939.11 kg/m^(3),1643.75 kg/m^(3),28.11%,and 10.35%,respectively,which can meet the standards for high-strength lightweight aggregates. 展开更多
关键词 high-carbon gasification slag CERAMSITE CONCRETE physical property
原文传递
CFD simulation of pumping ventilation in a three-story isolated building with internal partitioning:Effects of partition widths,heights and locations
2
作者 Huai-Yu Zhong Jie Sun +6 位作者 Chao Lin Song-Heng Wu Jin Shang Hideki Kikumoto Fu-Ping Qian Carlos Jimenez-Bescos Fu-Yun Zhao 《Building Simulation》 SCIE EI CSCD 2024年第2期267-284,共18页
Pumping ventilation(PV),a special single-sided ventilation(SSV),has been certified as an effective strategy to improve the air exchange rate of SSV.However,most studies targeted on the single space,and few studies hav... Pumping ventilation(PV),a special single-sided ventilation(SSV),has been certified as an effective strategy to improve the air exchange rate of SSV.However,most studies targeted on the single space,and few studies have been focused on the effect of internal partitioning on PV.This paper aims to evaluate the ventilation performance of PV influenced by different configurations of internal partitioning.Computational fluid dynamics(CFD)simulation was used to predict the flow fields and ventilation rates.The width(w/H),height(h/H)and location(d/H)are the three main internal partition parameters considered in this study.The simulation results showed that the total,mean and fluctuating ventilation rates all decrease with wider internal partitions.The normalized total ventilation rate decreases by 7.6%when w/H is increased from 50%to 75%.However,the reduction rate is only 0.23%between w/H=0 and 25%,and only 0.61%between w/H=25%and 50%.The ventilation rate is hardly reduced by increasing the partition width when w/H<50%,whereas greatly reduced by wider partition for w/H>50%.Increasing the partition height will reduce the mean ventilation rate but promote the fluctuating and total ventilation rate in some cases.An increase of total ventilation rate by 1.4%is observed from h/H=50%to 75%.The ventilation rate is larger when the internal partition is attached to the leeward or windward wall.The total,mean and fluctuating ventilation rates for d/H=50%are relatively higher than d/H=0 by 1.5%,3.1%and 0.8%,respectively.Hence the internal partition should be mounted attached to the windward wall so as to obtain the greatest pumping ventilation rate.The periodicity of pumping flow oscillation and pumping frequency are independent of the partition configurations.The peak power of pumping flow is the lowest for the widest internal partition and is negatively affected by the partition height,but it generally has a positive correlation with the distance between the partition and leeward wall.Present research will help to understand pumping ventilation mechanism in real buildings with internal partitioning and provide theoretical basis for developing unsteady natural ventilation technology in low-carbon buildings. 展开更多
关键词 pumping ventilation single-sided ventilation internal partitioning periodic oscillation ventilation rate
原文传递
Experimental investigation on indoor daylight environment of building with Cadmium Telluride photovoltaic window
3
作者 Yilin Hu Qingwen Xue +4 位作者 Haobo Wang Peng Zou Jinming Yang Shikeng Chen Yuanda Cheng 《Energy and Built Environment》 2024年第3期404-413,共10页
Photovoltaic(PV)windows have received more and more attention in recent years since their active energy-saving advantages.Considering the surface covered with solar cell modules,the indoor daylight environment of PV w... Photovoltaic(PV)windows have received more and more attention in recent years since their active energy-saving advantages.Considering the surface covered with solar cell modules,the indoor daylight environment of PV windows is obviously different with clear glass windows.However,despite many scholars have studied the indoor daylight environment of PV windows,there few investigations study it from the perspective of human subjective visual perception.In this paper,the indoor daylight environment and human visual comfort of building with Cadmium Telluride Photovoltaic(CdTe-PV)window were investigated.Firstly,the parameters of indoor daylight environment and subjective questionnaires in rooms with CdTe-PV window and clear glass window were analyzed respectively.On the basis of this,combined with indoor working surface illuminance and results of subjective questionnaires,the daylight illuminance threshold of human visual comfort was investigated by the method of Mean Bias Degree(MBD).Finally,an evaluation model for indoor daylight environment of buildings with CdTe-PV window was developed by Fuzzy Comprehensive Evaluation Method.The results showed that the working surface illuminance of CdTe-PV window was lower than that of clear glass room,the CCT of different windows room had a minor gap and the CdTe-PV window room was closer to the recommended range that was 3300-5000K.As for CRI,both the CdTe-PV window room and the clear glass room could meet the visual comfort requirements of office staff.Furthermore,it was found that the requirement of human visual comfort was met when indoor working surface illuminance varies between 500-2200lx in the room with CdTe-PV window.At last,according to the comprehensive evaluation model proposed in this paper,it was found that the indoor daylight environment of buildings with CdTe-PV window was excellent in the present experiment. 展开更多
关键词 Cadmium Telluride photovoltaic(CdTe-PV)window Daylight environment Human visual comfort Fuzzy comprehensive evaluation method
下载PDF
Investigation of Sulfate Attack Resistance of Shotcrete under Dry-wet Cycles 被引量:1
4
作者 王家滨 牛荻涛 +1 位作者 MA Rui ZHANG Yongli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1329-1335,共7页
In order to research the sulfate attack resistance of shotcrete, the sulfate attack of shotcrete in the presence and absence of steel fiber was experimentally studied by using dry-wet cycle method. Meanwhile, compared... In order to research the sulfate attack resistance of shotcrete, the sulfate attack of shotcrete in the presence and absence of steel fiber was experimentally studied by using dry-wet cycle method. Meanwhile, compared with ordinary concrete by the same mixture, the difference of sulfate attack resistance of shotcrete was studied. The experimental results showed that, with dry-wet cycles increasing, the changes of loss rate of relative dynamic elastic modulus and mass loss rate of specimens included three stages: initial descent stage, stable stage, and rapid descent stage, respectively. However, the changes of mechanical properties first increased and then decreased. Furthermore, the corrosion products of shotcrete after sulfate attack were observed by using the method of XRD, thermal analysis, and SEM, respectively, and the failure mode of shotcrete turned from ettringite destruction to ettringite-gypsum comprehensive failure. Meanwhile, the contents of ettringite and gypsum increased with increasing dry-wet cycle. Simultaneously, the stratified powders drilled from shotcrete under 150's dry-wet cycle were analyzed for the mineral phase composition and thermal analysis. With the drywet cycle increasing, the content of ettringite first increased and then decreased and tended to stable. However, the determination of gypsum decreased gradually and even to 0 when the depth was more than 12 mm. 展开更多
关键词 喷射混凝土 干湿循环 抗硫酸盐 侵蚀性能 循环条件 质量损失率 循环次数 硫酸盐侵蚀
原文传递
Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review
5
作者 Qiang Fu Mengxin Bu +3 位作者 Zhaorui Zhang Wenrui Xu Qiang Yuan Ditao Niu 《Engineering》 SCIE EI CAS CSCD 2023年第1期162-179,共18页
Alkali-activated slag concrete (AASC) is a new green building material. The amount of CO_(2) produced by AASC is 1/5th of that produced by ordinary Portland cement concrete (OPCC). In addition, AASC promotes the reuse... Alkali-activated slag concrete (AASC) is a new green building material. The amount of CO_(2) produced by AASC is 1/5th of that produced by ordinary Portland cement concrete (OPCC). In addition, AASC promotes the reuse of slag and other wastes and saves resources. Furthermore, the scope of use of slag has been expanded. The progress of the research on the hydration characteristics, microstructure, interfacial transition zone, and pore structure of AASC based on the relevant literatures was analyzed and summarized in this study. The influences of the slag composition, the type and dosage of the alkali activator, and the curing conditions on the hydration characteristics and the microstructure of the AASC were discussed. Relatively few research results on the microstructure of AASC are available, and the relevant conclusions are not completely consistent. Moreover, there are many constraints on the development of AASC (e.g., complex composition of raw materials of slag, large shrinkage deformation, and low fluidity). Therefore, further research is required. 展开更多
关键词 Alkali-activated slag concrete Hydration characteristics Pore structure Inter facial transiti on zone Micr ostructure
下载PDF
Organization and evolution of climate responsive strategies,used in Turpan vernacular buildings in arid region of China
6
作者 Wenfang He Zhenying Wu +1 位作者 Ran Jin Jiaping Liu 《Frontiers of Architectural Research》 CSCD 2023年第3期556-574,共19页
Under the global crisis of energy shortage and environmental pollution,the climate responsive strategies used in vernacular buildings have attracted much attention for their potential to reduce energy consumption and ... Under the global crisis of energy shortage and environmental pollution,the climate responsive strategies used in vernacular buildings have attracted much attention for their potential to reduce energy consumption and carbon emissions.However,the relationships between these traditional climatic strategies were not precisely perceived,which may cause the inapplicability of these strategies for contemporary rural houses.In this paper,taking the Turpan vernacular buildings in arid region of China,the climate responsive strategies of buildings in the most significant periods such as the Gaochang period(before 1318),the Khanate and Republican period(1318–1949),the Modern period(1949–2010),and the Contemporary period(2011–present)were summarized.In addition,two different types of climatic strategies organizations,namely multilayer spaces and integrated building envelopes,were identified based on the temperature difference measurement and comparative analysis.The assessment of thermal performance of the organizations was conducted by the methodology of software simulation.Furthermore,the applicability of the organizations in rural areas was discussed,and a new combined organization was proposed.Consequently,this study can contribute to provide the main approaches for climatically responsive rural houses. 展开更多
关键词 Climate responsive strategy Vernacular building ORGANIZATION Temperature difference Multilayer space ARID
原文传递
An improved transfer learning strategy for short-term cross-building energy prediction usingdata incremental
7
作者 Guannan Li Yubei Wu +5 位作者 Chengchu Yan Xi Fang Tao Li Jiajia Gao Chengliang Xu Zixi Wang 《Building Simulation》 SCIE EI CSCD 2024年第1期165-183,共19页
The available modelling data shortage issue makes it difficult to guarantee the performance of data-driven building energy prediction(BEP)models for both the newly built buildings and existing information-poor buildin... The available modelling data shortage issue makes it difficult to guarantee the performance of data-driven building energy prediction(BEP)models for both the newly built buildings and existing information-poor buildings.Both knowledge transfer learning(KTL)and data incremental learning(DIL)can address the data shortage issue of such buildings.For new building scenarios with continuous data accumulation,the performance of BEP models has not been fully investigated considering the data accumulation dynamics.DIL,which can learn dynamic features from accumulated data adapting to the developing trend of new building time-series data and extend BEP model's knowledge,has been rarely studied.Previous studies have shown that the performance of KTL models trained with fixed data can be further improved in scenarios with dynamically changing data.Hence,this study proposes an improved transfer learning cross-BEP strategy continuously updated using the coarse data incremental(CDI)manner.The hybrid KTL-DIL strategy(LSTM-DANN-CDI)uses domain adversarial neural network(DANN)for KLT and long short-term memory(LSTM)as the Baseline BEP model.Performance evaluation is conducted to systematically qualify the effectiveness and applicability of KTL and improved KTL-DIL.Real-world data from six-type 36 buildings of six types are adopted to evaluate the performance of KTL and KTL-DIL in data-driven BEP tasks considering factors like the model increment time interval,the available target and source building data volumes.Compared with LSTM,results indicate that KTL(LSTM-DANN)and the proposed KTL-DIL(LSTM-DANN-CDI)can significantly improve the BEP performance for new buildings with limited data.Compared with the pure KTL strategy LSTM-DANN,the improved KTL-DIL strategy LSTM-DANN-CDI has better prediction performance with an average performance improvement ratio of 60%. 展开更多
关键词 building energy prediction(BEP) cross-building data incremental learning(DIL) domain adversarial neural network(DANN) knowledge transfer learning(KTL)
原文传递
Dynamic thermal performance and energy-saving potential analysis of a modular pipe-embedded building envelope integrated with thermal diffusive materials 被引量:1
8
作者 Yang Yang Sarula Chen 《Building Simulation》 SCIE EI CSCD 2023年第12期2285-2305,共21页
In the context of racing to carbon neutrality,the pipe-embedded building system makes the opaque envelopes gradually regarded as the multi-functional element,which also provides an opportunity for thermal insulation s... In the context of racing to carbon neutrality,the pipe-embedded building system makes the opaque envelopes gradually regarded as the multi-functional element,which also provides an opportunity for thermal insulation solutions to transform from high to zero-carbon attributes.Based on the re-examination of the heat transfer process of conventional pipe-embedded radiant(CPR)walls,the modular pipe-embedded radiant(MPR)wall integrated with thermal diffusive materials is proposed to enhance the heat transfer capacity of CPR walls in the direction parallel to the wall surface,thereby forming a more stable and continuous invisible thermal barrier layer inside the opaque envelopes.A comprehensive thermal and energy-saving analysis study regarding the influence mechanism of several key factors of MPR walls,e.g.,the inclination angle of the filler cavity(θ-value),geometry size of the filler cavity(a:b-value)and thermal conductivity of the filler(λf-value),is conducted based on a validated numerical model.Results show that the dynamic thermal behaviors of MPR walls can be significantly improved due to that the radial thermal resistance in the filler cavity of MPR walls can be reduced by 50%,while the maximum extra exterior surface heat loss caused by the optimization measures is only 2.1%.Besides,a better technical effect can be achieved by setting the major axis of the filler cavity towards the room side,where the interior surface heat load/total injected heat first decreases/increases and then increases/decreases with the increase of theθ-value.In particular,the MPR wall withθL=60°can obtain the best performance when other conditions remain the same.Moreover,the performance indicators of MPR walls can be further improved with the increase of the cavity size(a:b-value),while showing a trend of rapid improvement in theλf-value range of 2–5λC and slow improvement increase in theλf-value range of 5–12λC.In addition,the improvement effect brought by optimizing theθ-value is more obvious as the a:b-value orλf-value increases. 展开更多
关键词 building energy efficiency pipe-embedded building envelope thermal diffusive material thermal characteristics numerical simulation
原文传递
Introducing Degree Days to Building Thermal Climatic Zoning in China 被引量:1
9
作者 LIU Yan WEN Zeqiu +4 位作者 LYU Kailin YANG Liu LIU Jiaping DONG Hong GAO Qinglong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期1155-1170,共16页
Building thermal climatic zoning is a key issue in building energy efficiency.Heating degree days(HDD) and cooling degree days(CDD) are often employed as indexes to represent the heating and cooling energy demand in c... Building thermal climatic zoning is a key issue in building energy efficiency.Heating degree days(HDD) and cooling degree days(CDD) are often employed as indexes to represent the heating and cooling energy demand in climatic zoning.However,only using degree days may oversimplify the climatic zoning in regions with complex climatic conditions.In the present study,the application of degree days to current building thermal climatic zoning in China was assessed based on performance simulations.To investigate the key indexes for thermal climatic zoning,the climate characteristics of typical cities were analyzed and the relationships between the climate indexes and heating/cooling demand were obtained.The results reveal that the annual cumulative heating load had a linear correlation with HDD 18 only in regions with small differences in altitude.Therefore,HDD is unsuitable for representing the heating demand in regions with large differences in altitude.A comprehensive index(winter climatic severity index) should be employed instead of HDD,or complementary indexes(daily global solar radiation or altitude) could be used to further divide climate zones.In the current official climatic zoning,the base temperature of 26℃ for CDD is excessively high.The appropriate base temperature range is 18℃ to 22℃.This study provides a reference for selecting indexes to improve thermal climatic zoning in regions with similar climates. 展开更多
关键词 climatic zoning degree days building thermal design base temperature solar radiation
原文传递
Timetabling optimization of classrooms and self-study rooms in university teaching buildings based on the building controls virtual test bed platform considering energy efficiency
10
作者 Yanfeng Liu Hui Ming +2 位作者 Xi Luo Liang Hu Yongkai Sun 《Building Simulation》 SCIE EI CSCD 2023年第2期263-277,共15页
The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,se... The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,self-study activities are not considered.In this study,an MATLAB-EnergyPlus joint simulation model was constructed based on the Building Controls Virtual Test Bed platform to reduce building energy consumption by optimizing the course schedule and opening strategy of self-study rooms in a holistic way.The following results were obtained by taking a university in Xi’an as an example:(1)The energy saving percentages obtained by timetabling optimization during the heating season examination week,heating season non-examination week,cooling season examination week,and cooling season non-examination week are 35%,29.4%,13.4%,and 13.4%,respectively.(2)Regarding the temporal arrangement,most courses are scheduled in the morning during the cooling season and afternoon during the heating season.Regarding the spatial arrangement,most courses are arranged in the central section of the middle floors of the building.(3)During the heating season,the additional building energy consumption incurred by the opening of self-study rooms decreases when duty heating temperature increases. 展开更多
关键词 timetabling optimization university teaching buildings energy efficiency Building Controls Virtual Test Bed platform genetic algorithm
原文传递
An improved window opening behavior model involving the division of the dummy variable’s interval level:Case study of an office building in Xi’an during summer
11
作者 Yaxiu Gu Tingting Wang +7 位作者 Qingqing Dong Zhuangzhuang Ma Tong Cui Changgui Hu Kun Liu Song Pan Qian Qi Minyan Xie 《Building Simulation》 SCIE EI CSCD 2023年第11期2123-2144,共22页
Window opening behavior significantly impacts indoor air quality,thermal comfort,and energy consumption.A field measurement was carried out in three typical rooms(a standard office,a meeting room and a smoking office)... Window opening behavior significantly impacts indoor air quality,thermal comfort,and energy consumption.A field measurement was carried out in three typical rooms(a standard office,a meeting room and a smoking office)within an office building.The window state and the physical environment were continuously recorded during the measured periods.Three typical window opening behaviors were found in the measured samples,namely,active,moderate,and passive.The common logistic regression coefficient indicated that solar radiation exhibited the greatest effect on window opening behavior in the smoking office and standard office.Typically,window opening behavior in the meeting room was the most strongly correlated with time of the day,mainly because of the meeting schedule for occupants in the meeting room.This study discussed the dividing principles involved in setting the dummy variable interval level(discretizing continuous variables and dividing them into different intervals),and proposed a method to determine the optimal interval level of each variable.The improved model led to the increase in the prediction accuracy rate of the window being opened by 2.0%and 3.3%according to the comparison with the original model based on dummy variables and the common model based on continuous variables,respectively.This study can provide a reference value for simulating energy consumption in office buildings in the future. 展开更多
关键词 office building window opening behavior influencing factors logistic regression model dummy variables optimal interval level
原文传递
Experimental study on the influence of temperature and humidity on the thermal conductivity of building insulation materials
12
作者 Yingying Wang Sudan Zhang +1 位作者 Dengjia Wang Yanfeng Liu 《Energy and Built Environment》 2023年第4期386-398,共13页
At present,thermal conductivity is usually taken as a constant value in the calculation of building energy con-sumption and load.However,in the actual use of building materials,they are exposed to the environment with... At present,thermal conductivity is usually taken as a constant value in the calculation of building energy con-sumption and load.However,in the actual use of building materials,they are exposed to the environment with continuously changing temperature and relative humidity.The thermal conductivity of materials will inevitably change with temperature and humidity,leading to deviations in the estimation of energy consumption in the building.Therefore,in this study,variations in the thermal conductivity of eight common building insulation materials(glass wool,rock wool,silica aerogel blanket,expanded polystyrene,extruded polystyrene,phenolic foam,foam ceramic and foam glass)with temperature(in the range of 20-60°C)and relative humidity(in the range of 0-100%)were studied by experimental methods.The results show that the thermal conductivity of these common building insulation materials increased approximately linearly with increasing temperature with maxi-mum growth rates from 3.9 to 22.7%in the examined temperature range.Due to the structural characteristics of materials,the increasing thermal conductivity of different materials varies depending on the relative humidity.The maximum growth rates of thermal conductivity with humidity ranged from 8.2 to 186.7%.In addition,the principles of selection of building insulation materials in different humidity regions were given.The research re-sults of this paper aim to provide basic data for the accurate value of thermal conductivity of building insulation materials and for the calculation of energy consumption. 展开更多
关键词 Building insulation materials Thermal conductivity Isothermal moisture absorption curve TEMPERATURE Relative humidity
下载PDF
A Quantitative Process-Based Inventory Study on Material Embodied Carbon Emissions of Residential, Office, and Commercial Buildings in China 被引量:3
13
作者 LUO Zhixing CANG Yujie +2 位作者 ZHANG Nan YANG Liu LIU Jiaping 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第6期1236-1251,共16页
Studies on building carbon emissions focus mainly on the materialization phase of life cycle, as carbon emissions in this stage is intensive and high. This paper proposes a simplified model to calculate embodied carbo... Studies on building carbon emissions focus mainly on the materialization phase of life cycle, as carbon emissions in this stage is intensive and high. This paper proposes a simplified model to calculate embodied carbon emissions in building design stage by conducting a process-based inventory analysis of carbon emissions from materials used in 129 residential buildings, 41 office buildings, and 21 commercial buildings during materialization phase. The results indicate that average carbon emissions per unit area from building materials used in residential buildings, office buildings, and commercial buildings are 514.66 kgCO2 e/m2, 533.69 kg CO2 e/m2 and 494.19 kgCO2 e/m2, respectively. Besides, ten kinds of building materials(namely, steel, commercial concrete, wall building materials, mortar, copper core cables, architectural ceramics, PVC pipes, thermal insulation materials, doors and windows, and water paint) constitute 99% of total carbon emissions in all three types of buildings. These materials are major carbon emissions sources in materialization phase. Thus, embodied carbon emissions can be significantly reduced by limiting the amount of these materials in architectural design as well as by using environmental friendly materials. 展开更多
关键词 EMBODIED carbon emissions life CYCLE analysis MATERIALIZATION phase building MATERIAL
原文传递
Damage Evolution of Concrete under the Actions of Stray Current and Sulphate 被引量:4
14
作者 张路 文波 +1 位作者 NIU Ditao JI Zhiyuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第4期578-587,共10页
Based on the mechanism of stray current generation in underground structures,the concrete durability test device for stray current and sulphate in typical soil environment was designed to study the damage of concrete ... Based on the mechanism of stray current generation in underground structures,the concrete durability test device for stray current and sulphate in typical soil environment was designed to study the damage of concrete under the action of stray current and sulphate.The deterioration law of concrete under the action of stray current and sulphate was studied by microscopic techniques such as scanning electron microscopy (SEM) and X-ray diffraction (XRD).The microstructure of corroded concrete was observed to determine the phase composition of erosion products.The damage performances such as quality,strength,and dynamic elastic mode of corroded concrete were performed.The experimental results show that,under the action of stray current,the products of sulfate-eroded concrete are mainly gypsum,ettringite,and thaumasite;the stray current accelerates the hydration process of cement and the erosion of concrete by sulfate;when the concrete pores are filled with the erosion product,there is an increase of approximately 10% in the concrete compressive strength and dynamic elastic modulus;and the concrete compressive strength is more sensitive to the stray current electrification period than the current intensity. 展开更多
关键词 Damage Evolution of Concrete under the Actions of Stray Current and Sulphate
原文传递
Heating load reduction characteristics of passive solar buildings in Tibet,China 被引量:1
15
作者 Yanfeng Liu Zuoxiang Yu +1 位作者 Cong Song Dengjia Wang 《Building Simulation》 SCIE EI CSCD 2022年第6期975-994,共20页
China’s Tibet autonomous region has abundant solar energy resources,cold winters,and cool summers.These are ideal conditions for the application of passive solar heating methods.However,differences in climatic condit... China’s Tibet autonomous region has abundant solar energy resources,cold winters,and cool summers.These are ideal conditions for the application of passive solar heating methods.However,differences in climatic conditions and building types can significantly affect passive solar technology’s feasibility,which makes it challenging to promote passive solar buildings in Tibet.In this study,the suitability zone for passive solar technology is categorized based on the sub-zoning indicators for Tibet.By modeling between direct gain windows,Trombe walls,and attached sunspaces,the effect of indoor thermal environments and the capacity for heating load reduction is compared for different passive solar technologies.The climate-difference impact analysis shows that the I-B-1 zone is better suited for passive solar technology than other climate zones.More specifically,this zone has an average energy-saving rate difference of up to 28.61%compared to the II-A-1 zone.The analysis of the impact of building type differences indicates that residential buildings have higher Trombe wall-to-wall ratio limits and more significant potential for energy savings than office buildings.The study also clarifies the implications of Tibet’s climate conditions and building type differences on the effectiveness of passive solar technology.Moreover,it recommends appropriate passive solar technology adoption methods for every climate zone.This study can be used as a reference and engineering guide to improving the indoor thermal environment of Tibetan buildings,tailored to the highly variable local conditions. 展开更多
关键词 passive solar technology building energy saving indoor thermal environment numerical simulation
原文传递
Erratum to: Heating load reduction characteristics of passive solar buildings in Tibet, China
16
作者 Yanfeng Liu Zuoxiang Yu +1 位作者 Cong Song Dengjia Wang 《Building Simulation》 SCIE EI CSCD 2022年第8期1545-1546,共2页
An incorrect Figure 7 was published in the original article.The data for Scenarios A1-A12 were accidentally deleted during typesetting.This erratum provides the correct Figure 7.
关键词 FIGURE deleted TIBET
原文传递
Numerical analysis on phase change progress and thermal performance of different roofs integrated with phase change material(PCM)in Moroccan semi-arid and Mediterranean climates 被引量:1
17
作者 Yanqiu Huang Shan Yang +3 位作者 Moussa Aadmi Yi Wang Mustapha Karkri Zhenhao Zhang 《Building Simulation》 SCIE EI CSCD 2023年第1期69-85,共17页
Phase change material(PCM)applied to roofs can weak external heat entering the room to reduce air-conditioning energy consumption.In this study,three forms of macro-encapsulated PCM roofs with different PCMs(RT27,RT31... Phase change material(PCM)applied to roofs can weak external heat entering the room to reduce air-conditioning energy consumption.In this study,three forms of macro-encapsulated PCM roofs with different PCMs(RT27,RT31,RT35HC,PT37)are proposed.The effects of PCM thickness,the encapsulation forms,and different PCMs on the thermal performance of the roof are discussed in Moroccan semi-arid and Mediterranean climates.The results show that as the PCM thickness increases,the peak temperature attenuation of the roof inner surface decreases.In two climates,the pure PCM layer among the three encapsulation forms(i.e.pure PCM layer,PCM in aluminum tubes,PCM in triangular aluminum)is the easiest to appear the phenomenon of insufficient heat storage and release,while the reduction of the peak inner surface temperature and time lag is the most satisfying.For the PCM in the aluminum tube,phase change time is the shortest and the latent heat utilization ratio is the highest,while thermal regulation performance is the least satisfying.The PCM in triangular aluminum can improve the latent heat utilization ratio significantly,and its thermal regulation performance is in the middle.In semi-arid climate,the time lag increases with phase change temperature increasing.The time lag could reach up to 6 h with 37℃phase transition temperature.In Mediterranean climate,the longest time lag with RT31 is 5 h,while the lowest peak inner surface temperature appears with RT27.The obtained conclusions could provide guidance for the application of PCM roofs in these two climates. 展开更多
关键词 numerical simulation PCM roof thermal performance inner surface temperature time lag
原文传递
Performance of novel overhead crane fume-collecting hood for pollutant removal
18
作者 Zhixiang Cao Pan Xiao +6 位作者 Yi Wang Yuqing Bai Chen Zhang Tongtong Zhao Chao Zhai Minghao Zhang Songheng Wu 《Building Simulation》 SCIE EI CSCD 2023年第7期1081-1095,共15页
In industrial buildings,the presence of overhead cranes severely affects roof exhaust ventilation systems when capturing and discharging fumes,resulting in severe deterioration of the indoor plant environment.In this ... In industrial buildings,the presence of overhead cranes severely affects roof exhaust ventilation systems when capturing and discharging fumes,resulting in severe deterioration of the indoor plant environment.In this study,an overhead crane-based ventilation auxiliary device,called overhead crane fume-collecting hood(CFCH),is proposed to guide pollutants blocked by the overhead crane back to the roof exhaust hood.The airflow characteristics and pollutant distribution under the three modes of no overhead crane,overhead crane,and overhead crane+CFCH were compared using numerical simulations.Subsequently,the effects of the CFCH length(a),width(b),and height(h)on the pollutant capture performance were determined through orthogonal experiments and computational fluid dynamics.Finally,the pollutant capture efficiency(PCE)of the optimal CFCH was investigated considering different exhaust airflow rates.The results showed that the pollutants captured by the CFCH can be classified into directly and secondary captured pollutants,with the directly captured pollutants dominating.In addition,with the introduction of different sizes of CFCH around the overhead crane girders,the PCE significantly improved by 49.9%–74.6%.The length,width,and height of the CFCH on the PCE were statistically significant,and the priority of the three factors was as follows:h>b>a.The PCE decreased with increasing a,initially increased and then decreased with increasing b,and increased with h.Subsequently,when the optimal CFCH was used,the excessive exhaust air rate had no evident PCE improvement.This provides a new concept for the control of pollutants in industrial buildings and provides a theoretical basis for the design of CFCHs. 展开更多
关键词 industrial building exhaust hood buoyant jet orthogonal experiment CFD simulation capture efficiency
原文传递
Multi-objective optimization of equipment capacity and heating network design for a centralized solar district heating system
19
作者 Yanfeng Liu Ting Mu Xi Luo 《Building Simulation》 SCIE EI CSCD 2023年第1期51-67,共17页
Northwest China has abundant solar energy resources and a large demand for winter heating.Using solar energy for centralized heating is a clean and effective way to solve local heating problems.While present studies u... Northwest China has abundant solar energy resources and a large demand for winter heating.Using solar energy for centralized heating is a clean and effective way to solve local heating problems.While present studies usually decoupled solar heating stations and the heating network in the optimization design of centralized solar heating systems,this study developed a joint multi-objective optimization model for the equipment capacity and the diameters of the heating network pipes of a centralized solar district heating system,using minimum total life cycle cost and CO_(2)emission of the system as the optimization objectives.Three typical cities in northwest China with different solar resource conditions(Lhasa,Xining,and Xi'an)were selected as cases for analysis.According to the results,the solar heating system designed using the method proposed in this study presents lower economic cost and higher environmental protection in comparison to separately optimizing the design of the solar heating station and the heating network.Furthermore,the solar fraction of the optimal systems are 90%,70%,and 31%for Lhasa,Xining,and Xi'an,and the minimum water supply temperatures are 55℃,50℃,and 65℃for an optimal economy and 55℃,45℃,and 45℃for optimal environmental protection,respectively.It was also established that the solar collector price has a greater impact on the equipment capacity of the solar heating station than the gas boiler price. 展开更多
关键词 solar energy solar energy system district heating optimization design genetic algorithm
原文传递
Non-uniform operative temperature distribution characteristics and heat-source-controlled core-area range of local heating radiators
20
作者 Dengjia Wang Weijia Li +3 位作者 Yanfeng Liu Yaowen Chen Liang Hu Hu Du 《Building Simulation》 SCIE EI CSCD 2023年第1期87-103,共17页
Heating the whole space,which is currently used in northern China,leads to high energy consumption and substantial pollution.A transition to local heating has the potential to help address this problem.In this paper,t... Heating the whole space,which is currently used in northern China,leads to high energy consumption and substantial pollution.A transition to local heating has the potential to help address this problem.In this paper,the effects of radiator-related parameters(position,power,and size)and room-related parameters(aspect ratio and height)on local heating were studied.Two evaluation indices,the effective coefficient of operative temperature(OTEC)and the effective coefficient of local heating(LHEC),were proposed.In addition,the heat source-control core-area(HSCCA)was proposed,and the effect range of heat sources in the space was evaluated by the attenuation of operative temperature.The findings demonstrated that the radiator position has a greater influence on local heating than size.When the position of the radiator was changed from"close to the inner wall"to"close to the outer wall",the LHEC(the interior one-quarter of room is a local heating zone)was found to decrease by 73%.The size of the radiator,which is close to the inner wall,doubled or quadrupled,and the LHEC increased by 9%and 18%.Moreover,rooms with a larger aspect ratio or small room height were found to be the most optimal for local heating applications.The area of the HSCCA decreased as the position of the radiator approached the outer wall.The findings of this study can be used as a design reference for the radiator when the heating mode changes from"full-space heating"to"local heating". 展开更多
关键词 local heating RADIATOR non-uniform thermal environment operative temperature mean radiant temperature temperature distribution
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部