期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
1
作者 Zediao Chen Feng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2215-2236,共22页
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ... Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials. 展开更多
关键词 Discontinuous deformation analysis particle DDA crack propagation crack branching brittle materials
下载PDF
Theoretical and Numerical Studies on the Coupling Deformation of Global Lateral Buckling and Walking of Submarine Pipeline
2
作者 LIU Run HAO Xintong +3 位作者 LI Chengfeng LI Qingxin YU Zheng ZHAO Dang 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1516-1528,共13页
Buckling initiation devices/techniques,including sleepers,distributed buoyancy,snake lay,and residual curvature method(RCM),have recently been widely applied in engineering.These initiated buckles may induce a long pi... Buckling initiation devices/techniques,including sleepers,distributed buoyancy,snake lay,and residual curvature method(RCM),have recently been widely applied in engineering.These initiated buckles may induce a long pipeline to transform into multiple short pipeline segments,which promote the occurrence of pipeline walking.Thus,a pipeline,which is designed to buckle laterally,may laterally and axially displace over time when subjected to repeated heating and cooling cycles.This study aims to reveal the coupling mechanism of pipeline walking and global lateral buckling.First,an analytic solution is proposed to estimate the walking of pipeline segments between two adjacent buckles.Then,the sensitivity of this method to heating and cooling cycles is analyzed.Results show the applicability of the proposed walking analytical solution of buckling pipelines.Subsequently,an influence analysis of walking on global buckling,including the capacity of buckling initiation,buckling amplitude,buckling mode,and failure assessment of the buckling pipeline,is performed.The results reveal that the effect of walking on the buckling axial force is negligible.However,pipeline walking will aggravate the asymmetry of the pipeline buckling and the failure parameters of the pipeline during the post-buckling. 展开更多
关键词 submarine pipeline global lateral buckling pipeline walking coupling deformation analytic solution
下载PDF
Influence of Incomplete Soil Plugs on Bearing Capacities of Bucket Foundations in Clay
3
作者 LI Hui-shan LIU Run +1 位作者 YANG Xu LIAN Ji-jian 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期144-155,共12页
Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be eval... Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be evaluated.In this paper,the contact ratio(the ratio of the top diameter of the soil plug to the diameter of the bucket)and the soil plug ratio(the ratio of the soil heave height to the skirt height)are defined to describe the shape and size of the incomplete soil plug.Then,finite element models are established to investigate the bearing capacities of bucket foundations with incomplete soil plugs and the influences of the contact ratios,and the soil plug ratios on the bearing capacities are analyzed.The results show that the vertical bearing capacity of bucket foundations in homogeneous soil continuously improves with the increase of the contact ratio.However,in normally consolidated soil,the vertical bearing capacity barely changes when the contact ratio is smaller than 0.75,while the bearing capacity suddenly increases when the contact ratio increases to 1 due to the change of failure mode.The contact ratio hardly affects the horizontal bearing capacity of bucket foundations.Moreover,the moment bearing capacity improves with the increase of the contact ratio for small aspect ratios,but hardly varies with increasing contact ratio for aspect ratios larger than 0.5.Consequently,the reduction coefficient method is proposed based on this analysis to calculate the bearing capacities of bucket foundations considering the influence of incomplete soil plugs.The comparison results show that the proposed reduction coefficient method can be used to evaluate the influences of incomplete soil plug on the bearing capacities of bucket foundations. 展开更多
关键词 bucket foundation incomplete soil plug uniaxial bearing capacity contact ratio soil plug ratio
下载PDF
Failure Envelopes of Single-Plate Rigid Helical Anchors for Floating Offshore Wind Turbine
4
作者 CHEN Hong-zhen WANG Le +3 位作者 TIAN Ying-hui ZHANG Chun-hui SHEN Zhi-chao LIU Meng-meng 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期1000-1010,共11页
Helical anchor is a kind of novel foundation for floating offshore wind turbines,which should be subjected to combined tensile loading caused by wind,wave and current.However,the research about the capacity of helical... Helical anchor is a kind of novel foundation for floating offshore wind turbines,which should be subjected to combined tensile loading caused by wind,wave and current.However,the research about the capacity of helical anchor was mainly examined under uniaxial loading and scarcely explored under combined loading.In this study,three-dimensional finite element limit analysis is adopted to assess the bearing capacities of single-plate rigid helical anchors with different ratios of helix to shaft diameter,D_(H)/D_(S) and embedment ratios L/D_(S).Result shows that the vertical,horizontal and moment bearing capacities increase with increasing D_(H)/D_(S) and L/D_(S).The normalized V-H failure envelopes expands with increasing L/D_(S),while the normalized V-M failure envelopes tend to contract with the increase of D_(H)/D_(S).With increasing D_(H)/D_(S) or decreasing L/D_(S),the normalized H-M failure envelopes expand when the horizontal and moment loading act in the same direction and contract when they act in the opposite direction.The effect of D_(H)/D_(S) and L/D_(S) on the shape of H-M failure envelope become insignificant when L/D_(S)≥4.A series of failure mechanisms under different loading conditions were observed and can be used to explain the trend.Besides,a series of approximate expressions were proposed to fit the uniaxial bearing capacities and the failure envelopes. 展开更多
关键词 helical anchors bearing capacity failure envelope CLAY
下载PDF
Preface for the Special Issue on“Safety and Intelligent Maintenance of Offshore Structures”
5
作者 XU Wan-hai 《China Ocean Engineering》 SCIE EI 2024年第2期181-182,共2页
The ocean serves as a vital carrier for human resource development and economic growth and contains rich mineral resources such as oil,natural gas,polymetallic nodules,cobalt-rich ferromanganese crusts,polymetallic su... The ocean serves as a vital carrier for human resource development and economic growth and contains rich mineral resources such as oil,natural gas,polymetallic nodules,cobalt-rich ferromanganese crusts,polymetallic sulfides,and rare earth ore.Moreover,the ocean has wealthy reserves of wind,wave,tidal,and solar energy,making it an essential strategic space for sustainable future development.However,offshore structures are complex. 展开更多
关键词 ocean offshore tidal
下载PDF
Pile Running in Layered Soils
6
作者 ZHAO Huan WANG Le +3 位作者 SUN Li-qiang TIAN Ying-hui Oliver REUL CHEN Quan-zhen 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期829-841,共13页
This paper presents a case study on incidents of offshore pile running in layered soils.The study provides a detailed description of the seabed soil data,pile driving records,and field surveillance video observations.... This paper presents a case study on incidents of offshore pile running in layered soils.The study provides a detailed description of the seabed soil data,pile driving records,and field surveillance video observations.Three-dimensional large deformation finite element(LDFE)analyses were conducted to retrospectively analyze the incidents,considering the remoulding of seabed soil and degradation of the pile-soil interface in the LDFE modeling.By comparing the field observations with the LDFE analysis,the mechanism of pile running was discussed,with a focus on investigating the pile penetration resistance in each layer.The study revealed that pile running in layered soils primarily resulted from a significant reduction in pile base resistance when transitioning from a strong layer to an adjacent weak layer.To further investigate the pile running mechanism in layered soils,a parametric study on the strength variation of adjacent soil layers and its influence on pile base resistance was conducted.Lastly,a simplified prediction model of pile base resistance,suitable for assessing the risk of pile running in layered soils,was proposed. 展开更多
关键词 pile running coupled Eulerian−Lagrangian method layered soil penetration resistance pile−soil interaction
下载PDF
Stability Study on the Bucket Foundation with Multi-Compartment During the Floating-up Process Considering Air Compressibility
7
作者 YE Fang-di LIAN Ji-jian +4 位作者 GUO Yao-hua WANG Hai-jun XIAO Tian-run XIONG Dong-zhi YU Tong-shun 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期975-988,共14页
In the process of developing offshore wind power towards deeper waters,the advantages of the bucket foundation in terms of integrated construction and economy are becoming increasingly evident.In contrast to conventio... In the process of developing offshore wind power towards deeper waters,the advantages of the bucket foundation in terms of integrated construction and economy are becoming increasingly evident.In contrast to conventional floating bodies,the air-floating bucket foundations can achieve self-floating with the help of the air in the compartment and adjust its buoyancy and stability by controlling the air volume in the compartment.The construction process of the bucket foundation involves the control of air in the compartment,thus making it more difficult to construct.Especially after the prefabrication of the bucket foundation,the stability of the bucket foundation at the floating-up stage is particularly critical.The stability of a multi-compartment bucket foundation during the floating-up process cannot be accurately evaluated as the existing theoretical method of air-floating structures does not adequately consider air compressibility.To ensure the safety of the floating-up process,a theoretical method based on the idea of intact stability has been developed to analyze the stability of the air-floating bucket foundations,which will allow accurate calculation of the righting arm for different tilt states and critical air leakage angle.At the same time,accuracy and feasibility of the proposed theoretical method are verified through indoor model tests and practical operation of the prototype structure during the floating-up process.In addition,measures to enhance the stability of the bucket foundation are proposed through sensitivity analysis of influencing factors. 展开更多
关键词 offshore wind power bucket foundation air-floating structure STABILITY
下载PDF
Investigations on Fluid Resonance Within A Narrow Gap Formed by Two Fixed Bodies with Varying Breadth Ratios
8
作者 GONG Shu-kai GAO Jun-liang MAO Hong-fei 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期962-974,共13页
The resonant motion of the fluid inside a narrow gap between two fixed boxes induced by incident regular waves with various wave heights is investigated by adopting a two-dimensional numerical wave flume based on an o... The resonant motion of the fluid inside a narrow gap between two fixed boxes induced by incident regular waves with various wave heights is investigated by adopting a two-dimensional numerical wave flume based on an opensourced CFD package,OpenFOAM.The two boxes have identical draft and height,but the upstream box has a variable breadth.This article focuses on the influences of the breadth ratio,defined as the ratio of the breadth of the upstream box to that of the downstream box,on the following three aspects of hydrodynamic characteristics of gap resonance:(1)the wave height amplifications inside the gap,and in front and at the rear of the structure system,(2)the reflection,transmission,and energy loss coefficients of the structure system,and(3)the response and damping time of the fluid resonance.It is found that the fluid resonant frequency,the amplification factor of the resonant wave height inside the gap and the maximum energy loss coefficient of the structure system are shown to gradually decrease with the increase of the breadth ratio.The response time of gap resonance is shown to first increase and then decrease with the breadth ratio overall,regardless of the incident wave height,and the configuration that the two boxes have the same breadth would bring the largest response time of gap resonance. 展开更多
关键词 gap resonance wave amplification varying breadth ratios OPENFOAM
下载PDF
A Review on Vibration Control of Multiple Cylinders Subjected to FlowInduced Vibrations
9
作者 XU Wan-hai MA Ye-xuan 《China Ocean Engineering》 SCIE EI 2024年第2期183-197,共15页
The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ... The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods. 展开更多
关键词 flow-induced vibration vibration control multiple cylinders tandem side-by-side staggered
下载PDF
Sparse Modal Decomposition Method Addressing Underdetermined Vortex-Induced Vibration Reconstruction Problem for Marine Risers
10
作者 DU Zun-feng ZHU Hai-ming YU Jian-xing 《China Ocean Engineering》 SCIE EI 2024年第2期285-296,共12页
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa... When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring. 展开更多
关键词 motion reconstruction vortex-induced vibration(VIV) marine riser modal decomposition method compressed sensing
下载PDF
砂土中长径比对三筒基础水平承载特性的影响
11
作者 张浦阳 冯嘉成 +2 位作者 石延杰 乐丛欢 丁红岩 《哈尔滨工程大学学报(英文版)》 2024年第2期406-416,共11页
The tripod foundation(TF)is a prevalent foundation configuration in contemporary engineering practices.In comparison to a single pile,TF comprised interconnected individual piles,resulting in enhanced bearing capacity... The tripod foundation(TF)is a prevalent foundation configuration in contemporary engineering practices.In comparison to a single pile,TF comprised interconnected individual piles,resulting in enhanced bearing capacity and stability.A physical model test was conducted within a sandy soil foundation,systematically varying the length-to-diameter ratio of the TF.The investigation aimed to comprehend the impact of altering the height of the central bucket on the historical horizontal bearing capacity of the foundation in saturated sand.Additionally,the study scrutinized the historical consequences of soil pressure and pore water pressure surrounding the bucket throughout the loading process.The historical findings revealed a significant enhancement in the horizontal bearing capacity of the TF under undrained conditions.When subjected to a historical horizontal loading angle of 0°for a single pile,the multi-bucket foundation exhibited superior historical bearing capacity compared to a single-pile foundation experiencing a historical loading angle of 180°under pulling conditions.With each historical increment in bucket height from 150 mm to 350 mm in 100 mm intervals,the historical horizontal bearing capacity of the TF exhibited an approximately 75%increase relative to the 150 mm bucket height,indicating a proportional relationship.Importantly,the historical internal pore water pressure within the bucket foundation remained unaffected by drainage conditions during loading.Conversely,undrained conditions led to a historical elevation in pore water pressure at the lower side of the pressure bucket.Consequently,in practical engineering applications,the optimization of the historical bearing efficacy of the TF necessitated the historical closure of the valve atop the foundation to sustain internal negative pressure within the bucket.This historical measure served to augment the historical horizontal bearing capacity.Simultaneously,historical external loads,such as wind,waves,and currents,were directed towards any individual bucket within the TF for optimal historical performance. 展开更多
关键词 Offshore wind Suction bucket jacket foundation Horizontal bearing capacity Vertical load Soil pressure Finite element model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部