期刊文献+
共找到410篇文章
< 1 2 21 >
每页显示 20 50 100
Molecular Simulation for the Materials-Oriented Chemical Engineering 被引量:1
1
作者 LU Xiao-hua SHAO Qing HUANG Liang-liang WANG Jun FENG Xin LU Ling-hong 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期844-844,共1页
关键词 纳米流体 微观结构 分子模拟方法
下载PDF
Designing Membrane Electrode Assembly for Electrochemical CO_(2)Reduction:a Review
2
作者 Xuerong Wang Shulin Zhao +4 位作者 Tao Guo Luyao Yang Qianqian Zhao Yuping Wu Yuhui Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期117-129,共13页
Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in explo... Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO_(2) RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO_(2) conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diff usion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the eff ects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO_(2) electrochemical reduction. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS Membrane electrode assembly
下载PDF
Design and Fabrication of Ceramic Catalytic Membrane Reactors for Green Chemical Engineering Applications 被引量:4
3
作者 Guangru Zhang Wanqin Jin Nanping Xu 《Engineering》 SCIE EI 2018年第6期848-860,共13页
Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is bei... Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is being widely considered because it permits reactions and separations to be carried out under harsh conditions in terms of both temperature and the chemical environment.This article presents the two most important types of CMRs:those based on dense mixed-conducting membranes for gas separation,and those based on porous ceramic membranes for heterogeneous catalytic processes.New developments in and innovative uses of both types of CMRs over the last decade are presented,along with an overview of our recent work in this field.Membrane reactor design,fabrication,and applications related to energy and environmental areas are highlighted.First,the configuration of membranes and membrane reactors are introduced for each of type of membrane reactor.Next,taking typical catalytic reactions as model systems,the design and optimization of CMRs are illustrated.Finally,challenges and difficulties in the process of industrializing the two types of CMRs are addressed,and a view of the future is outlined. 展开更多
关键词 DENSE CERAMIC MEMBRANE Porous CERAMIC MEMBRANE CATALYTIC MEMBRANE REACTOR Gas separation Heterogeneous CATALYSIS
下载PDF
Microfluidic field strategy for enhancement and scale up of liquid-liquid homogeneous chemical processes by optimization of 3D spiral baffle structure 被引量:1
4
作者 Shuangfei Zhao Yingying Nie +7 位作者 Wenyan Zhang Runze Hu Lianzhu Sheng Wei He Ning Zhu Yuguang Li Dong Ji Kai Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期255-265,共11页
Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing... Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing efficiency in large-scale channel. A 3D spiral baffle structure(3SBS) was designed and optimized to form microfluidic field disturbed by continuous secondary flow in millimeter scale Y-shaped tube mixer(YSTM). Enhancement effect of the 3SBS in liquid-liquid homogeneous chemical processes was verified and evaluated through the combination of simulation and experiment. Compared with 1 mm YSTM, 10 mm YSTM with 3SBS increased the treatment capacity by 100 times, shortened the basic complete mixing time by 0.85 times, which proves the potential of microfluidic field strategy in enhancement and scale-up of liquid-liquid homogeneous chemical process. 展开更多
关键词 Mixing efficiency Chemical process intensification Scale up REACTOR Computational fluid dynamics(CFD) Numerical simulation
下载PDF
Advances in Sn-Based Catalysts for Electrochemical CO_(2) Reduction 被引量:3
5
作者 Shulin Zhao Sheng Li +4 位作者 Tao Guo Shuaishuai Zhang Jing Wang Yuping Wu Yuhui Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期114-132,共19页
The increasing concentration of CO2 in the atmosphere has led to the greenhouse effect,which greatly affects the climate and the ecological balance of nature.Therefore,converting CO2 into renewable fuels via clean and... The increasing concentration of CO2 in the atmosphere has led to the greenhouse effect,which greatly affects the climate and the ecological balance of nature.Therefore,converting CO2 into renewable fuels via clean and economical chemical processes has become a great concern for scientists.Electrocatalytic CO2 conversion is a prospective path toward carbon cycling.Among the different electrocatalysts,Sn-based electrocatalysts have been demonstrated as promising catalysts for CO2 electroreduction,producing formate and CO,which are important industrial chemicals.In this review,various Sn-based electrocatalysts are comprehensively summarized in terms of synthesis,catalytic performance,and reaction mechanisms for CO2 electroreduction.Finally,we concisely discuss the current challenges and opportunities of Sn-based electrocatalysts. 展开更多
关键词 Greenhouse effect CO_(2) ELECTROCHEMICAL REDUCTION Sn-based ELECTROCATALYSTS
下载PDF
Physicochemical properties and structure of fluid at nano-/micro-interface:Progress in simulation and experimental study 被引量:3
6
作者 Qingwei Gao Yumeng Zhang +4 位作者 Shuting Xu Aatto Laaksonen Yudan Zhu Xiaoyan Ji Xiaohua Lu 《Green Energy & Environment》 SCIE CSCD 2020年第3期274-285,共12页
In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the revi... In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the review, we summarized the research progress of the latest theoretical and experimental works to elucidate the contribution of interface to the fluid properties and structures at nano-and micro-scale. We mainly focused on water, alcohol aqueous solution, and ionic liquids, because they are classical systems in interfacial science and/or widely involved in the industrialization process. Surface-induced fluids were observed in all reviewed systems and played a critical role in physicochemical properties and structures of outside fluid. It can even be regarded as a new interface, when the adsorption layer has a strong interaction with the solid surface. Finally, we proposed a perspective on scientific challenges in the modern chemical engineering processes and outlined future prospects. 展开更多
关键词 THERMODYNAMICS Solid/fluid interface Surface-induced Adsorbed layer Microstructure
下载PDF
Fouling behavior of poly(vinylidene fluoride)(PVDF)ultrafiltration membrane by polyvinyl alcohol(PVA)and chemical cleaning method 被引量:2
7
作者 Weijie Ding Min Chen +3 位作者 Ming Zhou Zhaoxiang Zhong Zhaoliang Cui Weihong Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期3018-3026,共9页
Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and ... Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and the low-concentration polyvinyl alcohol(PVA)contained in the sedimentation tank wastewater was found as the main foulant.Consequently,the corresponding cleaning approach was proposed.The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time.Chemical cleaning conditions including the composition and concentration of reagents,cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency.Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO(as oxidant)and 0.1 wt% sodiumdodecyl benzene sulfonate(SDBS,as surfactant)at 0.04MPa for 100 min.In the chemical cleaning method,hypochlorite(ClO−)could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles,so that the foulants were removed from the pores and surface of membrane.After eight cycling tests,pure water flux recovery maintained above 95% and the reused membrane was found intact without defects. 展开更多
关键词 PVDF membrane FOULING PVA Chemical cleaning
下载PDF
Formulation Design of the Multi-component Cement Additive by Using Engineering Statistics 被引量:1
8
作者 黄弘 沈晓冬 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期538-544,共7页
A novel methodology for the formulation design of the multi-component cement additive for the low early strength blend cement was presented by using engineering statistics.Components of cement additive such as trietha... A novel methodology for the formulation design of the multi-component cement additive for the low early strength blend cement was presented by using engineering statistics.Components of cement additive such as triethanolamine,chloride,saccharide and a kind of divalent alcohol were simultaneously tested according to the arrangement of response surface methodology.Mathematical models were established to express the quantitative relationship between the chemical components of cement additive and the compressive strength of treated blend cement.The effectiveness and the possible interactions of these four chemicals contributing to the strength development of blend cement were further explored by the pareto chart and the contour plot.Finally according the performance analysis of four chemicals,the optimized formulations were brought forward and were validated in practical trials by Turkey's multiple comparison. 展开更多
关键词 水泥添加剂 配方设计 多组分 工程统计 混合水泥 响应面模型 早期强度 三乙醇胺
原文传递
Ionic liquids for CO_(2) electrochemical reduction 被引量:2
9
作者 Fangfang Li Francesca Mocci +2 位作者 Xiangping Zhang Xiaoyan Ji Aatto Laaksonen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第3期75-93,共19页
Electrochemical reduction of CO_(2) is a novel research field towards a CO_(2)-neutral global economy and combating fast accelerating and disastrous climate changes while finding new solutions to store renewable energ... Electrochemical reduction of CO_(2) is a novel research field towards a CO_(2)-neutral global economy and combating fast accelerating and disastrous climate changes while finding new solutions to store renewable energy in value-added chemicals and fuels.Ionic liquids(ILs),as medium and catalysts(or supporting part of catalysts)have been given wide attention in the electrochemical CO_(2) reduction reaction(CO_(2) RR)due to their unique advantages in lowering overpotential and improving the product selectivity,as well as their designable and tunable properties.In this review,we have summarized the recent progress of CO_(2) electro-reduction in IL-based electrolytes to produce higher-value chemicals.We then have highlighted the unique enhancing effect of ILs on CO_(2) RR as templates,precursors,and surface functional moieties of electrocatalytic materials.Finally,computational chemistry tools utilized to understand how the ILs facilitate the CO_(2) RR or to propose the reaction mechanisms,generated intermediates and products have been discussed. 展开更多
关键词 Carbon dioxide Ionic liquids ELECTRO-REDUCTION ELECTROLYTE Electrocatalytic material Computer simulation
下载PDF
Atomic-level insights into surface engineering of semiconductors for photocatalytic CO_(2) reduction 被引量:1
10
作者 Hengming Huang Hui Song +2 位作者 Jiahui Kou Chunhua Lu Jinhua Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期309-341,共33页
Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2... Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2)RR)is still challenging owing to the sluggish kinetics or unfavorable thermodynamics for basic chemical processes of CO_(2)RR,such as adsorption,activation,conversion and product desorption.To overcome these shortcomings,recent works have demonstrated that surface engineering of semiconductors,such as introducing surface vacancy,surface doping,and cocatalyst loading,serves as effective or promising strategies for improved photocatalytic CO_(2)RR with high activity and selectivity.The essential reason lies in the activation and reaction pathways can be optimized and regulated through the reconstruction of surface atomic and electronic structures.Herein,in this review,we focus on recent research advances about rational design of semiconductor surface for photocatalytic CO_(2)RR.The surface engineering strategies for improved CO_(2)adsorption,activation,and product selectivity will be reviewed.In addition,theoretical calculations along with in situ characterization techniques will be in the spotlight to clarify the kinetics and thermodynamics of the reaction process.The aim of this review is to provide deep understanding and rational guidance on the design of semiconductors for photocatalytic CO_(2)RR. 展开更多
关键词 CO_(2)reduction Photocatalysis Surface engineering Activation SELECTIVITY
下载PDF
High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells 被引量:1
11
作者 Zuoqing Liu Zhengjie Tang +8 位作者 Yufei Song Guangming Yang Wanru Qian Meiting Yang Yinlong Zhu Ran Ran Wei Wang Wei Zhou Zongping Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期505-520,共16页
Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem... Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem of large-scale energy storage.However,the development of robust electrodes with high catalytic activity is the main bottleneck for the commercialization of R-PCECs.Here,a novel type of high-entropy perovskite oxide consisting of six equimolar metals in the A-site,Pr_(1/6)La_(1/6)Nd_(1/6)Ba_(1/6)Sr_(1/6)Ca_(1/6)CoO_(3−δ)(PLN-BSCC),is reported as a high-performance bifunctional air electrode for R-PCEC.By harnessing the unique functionalities of multiple ele-ments,high-entropy perovskite oxide can be anticipated to accelerate reaction rates in both fuel cell and electrolysis modes.Especially,an R-PCEC utilizing the PLNBSCC air electrode achieves exceptional electrochemical performances,demonstrating a peak power density of 1.21 W cm^(−2)for the fuel cell,while simultaneously obtaining an astonishing current density of−1.95 A cm^(−2)at an electrolysis voltage of 1.3 V and a temperature of 600℃.The significantly enhanced electrochemical performance and durability of the PLNBSCC air electrode is attributed mainly to the high electrons/ions conductivity,fast hydration reactivity and high configurational entropy.This research explores to a new avenue to develop optimally active and stable air electrodes for R-PCECs. 展开更多
关键词 Reversible proton ceramic electrochemical cells High-entropy oxide Air electrode Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Electrolyte materials for protonic ceramic electrochemical cells:Main limitations and potential solutions 被引量:1
12
作者 Anna V.Kasyanova Inna A.Zvonareva +3 位作者 Natalia A.Tarasova Lei Bi Dmitry A.Medvedev Zongping Shao 《Materials Reports(Energy)》 2022年第4期19-35,共17页
Solid oxide fuel cells(SOFCs)and electrolysis cells(SOECs)are promising energy conversion devices,on whose basis green hydrogen energy technologies can be developed to support the transition to a carbon-free future.As... Solid oxide fuel cells(SOFCs)and electrolysis cells(SOECs)are promising energy conversion devices,on whose basis green hydrogen energy technologies can be developed to support the transition to a carbon-free future.As compared with oxygen-conducting cells,the operational temperatures of protonic ceramic fuel cells(PCFCs)and electrolysis cells(PCECs)can be reduced by several hundreds of degrees(down to low-and intermediatetemperature ranges of 400–700C)while maintaining high performance and efficiency.This is due to the distinctive characteristics of charge carriers for proton-conducting electrolytes.However,despite achieving outstanding lab-scale performance,the prospects for industrial scaling of PCFCs and PCECs remain hazy,at least in the near future,in contrast to commercially available SOFCs and SOECs.In this review,we reveal the reasons for the delayed technological development,which need to be addressed in order to transfer fundamental findings into industrial processes.Possible solutions to the identified problems are also highlighted. 展开更多
关键词 Protonic ceramic fuel cells(PCFCs) Protonic ceramic electrolysis cells(PCECs) Proton transport ELECTROCHEMISTRY Hydrogen energy
下载PDF
Electro-chemo-mechanical analysis of the effect of bending deformation on the interface of flexible solid-state battery 被引量:1
13
作者 Yutao SHI Chengjun XU +2 位作者 Bingbing CHEN Jianqiu ZHOU Rui CAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期189-206,共18页
Flexible solid-state battery has several unique characteristics including high flexibility,easy portability,and high safety,which may have broad application prospects in new technology products such as rollup displays... Flexible solid-state battery has several unique characteristics including high flexibility,easy portability,and high safety,which may have broad application prospects in new technology products such as rollup displays,power implantable medical devices,and wearable equipments.The interfacial mechanical and electrochemical problems caused by bending deformation,resulting in the battery damage and failure,are particularly interesting.Herein,a fully coupled electro-chemo-mechanical model is developed based on the actual solid-state battery structure.Concentration-dependent material parameters,stress-dependent diffusion,and potential shift are considered.According to four bending forms(k=8/mm,0/mm,-8/mm,and free),the results show that the negative curvature bending is beneficial to reducing the plastic strain during charging/discharging,while the positive curvature is detrimental.However,with respect to the electrochemical performance,the negative curvature bending creates a negative potential shift,which causes the battery to reach the cut-off voltage earlier and results in capacity loss.These results enlighten us that suitable electrode materials and charging strategy can be tailored to reduce plastic deformation and improve battery capacity for different forms of battery bending. 展开更多
关键词 solid-state battery electro-chemo-mechanical coupling model bending deformation PHASE-TRANSFORMATION plastic deformation
下载PDF
Engineering the native methylotrophs for the bioconversion of methanol to value-added chemicals:current status and future perspectives 被引量:1
14
作者 Jing Wang Ruirui Qin +4 位作者 Yuanke Guo Chen Ma Xin Wang Kequan Chen Pingkai Ouyang 《Green Chemical Engineering》 EI CSCD 2023年第2期199-211,共13页
Methanol is becoming an attractive fermentation feedstock for large-scale bioproduction of chemicals,due to its natural abundance and mature production technology.Native methylotrophs,which can utilize methanol as the... Methanol is becoming an attractive fermentation feedstock for large-scale bioproduction of chemicals,due to its natural abundance and mature production technology.Native methylotrophs,which can utilize methanol as the only source of carbon and energy,are ideal hosts for methanol bioconversion due to their high methanol utili-zation rate and have been extensively employed in the production of value-added chemicals from methanol.Here,we review the natural methanol utilization pathways in native methylotrophs,describing the available synthetic biology tools developed for engineering native methylotrophs,and discuss the strategies for improving their methanol utilization efficiency.Finally,the representative examples of engineering the native methylotrophs to produce value-added products from methanol are summarized.Furthermore,we also discuss the major challenges and possible solutions for the application of native methylotrophs in methanol-based biomanufacturing. 展开更多
关键词 Native methylotrophs METHANOL Biomanufacturing Value-added chemicals
原文传递
Effects of the original state of sodium-based additives on microstructure,surface characteristics and filtration performance of SiC membranes
15
作者 Yuling Xie Qilin Gu +2 位作者 Qian Jiang Zhaoxiang Zhong Weihong Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期1-11,共11页
Sodium-contained compounds are promising sintering additives for the low-temperature preparation of reaction bonded SiC membranes.Although sodium-based sintering additives in various original states were attempted,the... Sodium-contained compounds are promising sintering additives for the low-temperature preparation of reaction bonded SiC membranes.Although sodium-based sintering additives in various original states were attempted,their effects on microstructure and surface properties have rarely been studied.In this work,three types of sodium-based additives,including solid-state NaA zeolite residue(NaA)and liquidstate dodecylbenzene sulfonate(SDBS)and water glass(WG),were separately adopted to prepare SiC membranes,and the microstructure,surface characteristics and filtration performance of these SiC membranes were comparatively studied.Results showed that the SiC membranes prepared with liquid-state SDBS and WG(S-SDBS and S-WG)showed lower open porosity yet higher bending strength compared to those prepared with solid-state NaA(S-NaA).The observed differences in bending strength were further interpreted by analyzing the reaction process of each sintering additive and the composition of the bonding phase in the reaction bonded SiC membranes.Meanwhile,the microstructural differentiation was correlated to the original state of the additives.In addition,their surface characteristics and filtration performance for oil-in-water emulsion were examined and correlated to the membrane microstructure.The S-NaA samples showed higher hydrophilicity,lower surface roughness(1.80μm)and higher rejection ratio(99.99%)in O/W emulsion separation than those of S-WG and S-SDBS.This can be attributed to the smaller mean pore size and higher open porosity,resulting from the originally solid-state NaA additives.Therefore,this work revealed the comprehensive effects of original state of sintering additives on the prepared SiC membranes,which could be helpful for the application-oriented fabrication by choosing additives in suitable state. 展开更多
关键词 SiC membrane Sintering additive Reaction sintering MICROSTRUCTURE Oil-in-water emulsions
下载PDF
Optical and electrochemical dual detection ofβ-lactoglobulin based on the methylene blue@copper-based metal-organic framework
16
作者 Yuwei Wang Jingyi Hong +2 位作者 Xinlong Wang Liying Zhu Ling Jiang 《Food Materials Research》 2022年第1期131-138,共8页
β-lactoglobulin is an effective indicator of allergic protein detection.Herein,we produced a copper-based metal-organic framework coated with methylene blue,to realize the optical and electrochemical dual detection o... β-lactoglobulin is an effective indicator of allergic protein detection.Herein,we produced a copper-based metal-organic framework coated with methylene blue,to realize the optical and electrochemical dual detection ofβ-lactoglobulin.Methylene blue was successfully encapsulated inside the copper-based metal-organic framework and released after addition ofβ-lactoglobulin.As the concentration ofβ-lactoglobulin increased,the intensity of the ultraviolet absorption band and the response current increased with the increasing concentration of methylene blue released from the copper-based metal-organic framework.The optical detection range is from 0.10 mg/mL to 10 mg/mL,and the detection limit is 0.10 mg/mL.The electrochemical detection range is from 1.0×10^(-7) mg/mL to 8.0×10^(-7) mg/mL,the detection limit is 2.0×10^(-8) mg/mL.The dual detection strategy,with no interfere with each other,played a synergetic role in the quick qualitative and precise quantitative analyses ofβ-lactoglobulin in a wide range of applications. 展开更多
关键词 COPPER METHYLENE ELECTROCHEMICAL
下载PDF
Hollow ZIF-67-derived Co@N-doped carbon nanotubes boosting the hydrogenation of phenolic compounds to alcohols
17
作者 Zhihao Guo Jiuxuan Zhang +3 位作者 Lanlan Chen Chaoqun Fan Hong Jiang Rizhi Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期157-166,共10页
The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named... The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named Co@NCNTs,were designed and constructed by direct pyrolysis of hollow ZIF-67(HZIF-67)under H_(2)/Ar atmosphere.The evolution of the catalyst surface from the shell layer assembled by ZIF-67-derived particles to the in situ-grown hollow nitrogen-doped carbon nanotubes(NCNTs)with certain length and density is achieved by adjusting the pyrolysis atmosphere and temperature.Due to the synergistic effects of in situ-formed hollow NCNTs,well-dispersed Co nanoparticles,and intact carbon matrix,the as-prepared Co@NCNTs-0.10-450 catalyst exhibits superior catalytic performance in the hydrogenation of phenolic compounds to alcohols.The turnover frequency value of Co@NCNTs-0.10-450is 3.52 h^(-1),5.9 times higher than that of Co@NCNTs-0.40-450 and 4.5 times higher than that of Co@NCNTs-0.10-550,exceeding most previously reported non-noble metal catalysts.Our findings provide new insights into the development of non-precious metal,efficient,and cost-effective metal-organic framework-derived catalysts for the hydrogenation of phenolic compounds to alcohols. 展开更多
关键词 Phenolic compounds Hollow ZIF-67 pyrolysis Nitrogen-doped carbon nanotubes Reduction Multiphase reaction Catalysis
下载PDF
Exploring the potential of olivine-containing copper-nickel slag for carbon dioxide mineralization in cementitious materials
18
作者 Qianqian Wang Zequn Yao +1 位作者 Lijie Guo Xiaodong Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期562-573,共12页
Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementi... Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals. 展开更多
关键词 copper-nickel slag FAYALITE CO_(2)sequestration cementitious material ADMIXTURES carbonation conditions
下载PDF
Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals
19
作者 Jie Wu Xiaoqing Yu +1 位作者 Guoxing Li Su Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期457-463,共7页
Particle engineering has opened the floodgates to material science in both fundamental and application field. However, covalent interactions have not yet been adequately designed in the particle engineering for functi... Particle engineering has opened the floodgates to material science in both fundamental and application field. However, covalent interactions have not yet been adequately designed in the particle engineering for functional colloidal photonic crystals(CPCs). Herein, we achieved covalent coupling between carboxylrich poly(styrene-acrylic acid)(P(St-AA)) monodispersed colloidal particles and amine-rich carbon dots(CDs) based on an feasible and universal particle engineering strategy. The designed CDs-grafted P(St-AA)monodispersed colloidal particles initiate a hydrogen bond-driven assembly mode and ensure the construction of large-scale crack-free CPCs. Moreover, the CDs equipped with selective broad-band absorption capacity could improve the saturation of structural colors for high-visibility CPCs. Furthermore, an injectable photonic hydrogel(IPH) is developed to design CPC supraball hydrogel via integrating the CDsgrafted P(St-AA) CPC supraballs with supramolecular hydrogel. Combining superior flexibility, sufficient self-healing capacity of supramolecular hydrogel with visual optical information of our CPC supraballs, a cyclically reversible coding and decoding system was developed. Meanwhile, we firstly demonstrated the novel strategy of 3D supraballs-based passive cooling. The designed 3D CPC supraball hydrogel presents nearly full observation angle reflections behavior and excellent water evaporation capacity and achieves3.6 ℃ temperature drops, showing the application advantages in 3D thermal management. This work not only provides a new insight for manipulating optical properties of CPCs, but also demonstrates an easyto-perform platform, as well as indicates the direction for the promising application of CPCs. 展开更多
关键词 Particle engineering Carbon dots Colloidal photonic crystals Passive cooling Digital coding
原文传递
Flower-like tin oxide membranes with robust three-dimensional channels for efficient removal of iron ions from hydrogen peroxide
20
作者 Risheng Shen Shilong Li +3 位作者 Yuqing Sun Yuan Bai Jian Lu Wenheng Jing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期1-7,共7页
Membrane technology has become the mainstream process for the production of electronic grade hydrogen peroxide(H_(2)O_(2)).But due to the oxidation degradation of the organic membranes(e.g.polyamide)by the strong oxid... Membrane technology has become the mainstream process for the production of electronic grade hydrogen peroxide(H_(2)O_(2)).But due to the oxidation degradation of the organic membranes(e.g.polyamide)by the strong oxidative radicals(e.g.OH)generated via the activation of H_(2)O_(2)by iron ions(Fe^(3+)),the short effective lifetime of membranes remains a challenge.Inorganic nano tin oxide(SnO_(2))has great potential for the removal of Fe^(3+)in strongly oxidative H_(2)O_(2)because of its ability to stabilize H2O_(2)and preferentially adsorb Fe^(3+).Herein,we have designed for the first time a flower-like robust SnO_(2)membrane on the ceramic support by in situ template-free one-step hydrothermal method.The three-dimensional loose pore structure in the membrane built by interlacing SnO_(2)nanosheets endows the SnO_(2)membrane with a high specific surface area and abundant adsorption sites(AOH).Based on the coordination complexation and electrostatic attraction between the SnO_(2)surface and Fe^(3+),the membrane shows a high Fe3+removal efficiency(83%)and permeability(24 L·m^(-2)·h^(-1)·MPa^(-1))in H_(2)O_(2).This study provides an innovative and simple approach to designing robust SnO_(2)membranes for highly efficient removal of Fe^(3+)in harsh environments,such as strong oxidation conditions. 展开更多
关键词 Hydrogen peroxide SnO_(2)membrane Adsorption HYDROTHERMAL
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部