期刊文献+
共找到424篇文章
< 1 2 22 >
每页显示 20 50 100
Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbongenerating potential of the Qiangtang Basin: New evidence from the scientific drilling project 被引量:1
1
作者 Li-jun Shen Jian-yong Zhang +4 位作者 Shao-yun Xiong Jian Wang Xiu-gen Fu Bo Zheng Zhong-wei Wang 《China Geology》 CAS CSCD 2023年第2期187-207,共21页
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ... The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential. 展开更多
关键词 Scientific drilling project Oil and gas preservation Source rock Quemo Co Formation Oil and gas exploration engineering Qiangtang Basin Tibet
下载PDF
Reservoir heterogeneity controls of CO_(2)-EOR and storage potentials in residual oil zones:Insights from numerical simulations 被引量:1
2
作者 Yan-Yong Wang Xiao-Guang Wang +4 位作者 Ren-Cheng Dong Wen-Chao Teng Shi-Yuan Zhan Guang-Yong Zeng Cun-Qi Jia 《Petroleum Science》 SCIE EI CSCD 2023年第5期2879-2891,共13页
Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it h... Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it has not been clearly visualized and understood that how geological heterogeneity factors control the transport of CO_(2)in ROZs.In this study,the oil recovery performance and geologic storage potential during continuous CO_(2)injection in a representative ROZ are studied based on geostatistical modelling and high-fidelity three-phase flow simulation.We examined the influence of autocorrelation length of permeability,global heterogeneity(DykstraeParsons coefficient),and permeability anisotropy on cumulative oil recovery and CO_(2)retention fraction.Simulation results indicate that,as the permeability autocorrelation length increases,the cumulative oil recovery and CO_(2)storage efficiency decrease.This results from the accelerated migration of CO_(2)along high permeability zones(i.e.,gas channeling).The increase in global heterogeneity and permeability anisotropies can lead to low oil recovery and poor CO_(2)sequestration performance,depending on the degree of CO_(2)channeling.The net utilization ratio of CO_(2)(CO_(2)retained/oil produced)unfavorably increases with both autocorrelation length and Dykstra eParsons coefficient,but decreases with the increase in kv/kh.Such a decrease is attributed to enlarged swept volume induced by gravity override.The study provides important implications for fieldscale CO_(2)EOR and storage applications in ROZs. 展开更多
关键词 Residual oil zones CO_(2)injection Enhanced oil recovery Geologic sequestration
下载PDF
Fracture sealing performance of granular lost circulation materials at elevated temperature:A theoretical and coupled CFD-DEM simulation study
3
作者 Chong Lin Qi-Cong Xu +4 位作者 Lie-Xiang Han Gao Li Hai He Hong-Ling Zhou Ji-Ping She 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期567-581,共15页
Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulatio... Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones. 展开更多
关键词 Geothermal well drilling HTHP formationLost circulation material CFD-DEM Fracture sealing
下载PDF
Investigation of flue gas water-alternating gas (flue gas–WAG) injection for enhanced oil recovery and multicomponent flue gas storage in the post-waterflooding reservoir 被引量:1
4
作者 Zhou-Hua Wang Bo-Wen Sun +5 位作者 Ping Guo Shuo-Shi Wang Huang Liu Yong Liu Dai-Yu Zhou Bo Zhou 《Petroleum Science》 SCIE CAS CSCD 2021年第3期870-882,共13页
Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of f... Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of fue gas water-alternating gas(fue gas-WAG)injection after continuous waterfooding in an oil reservoir,a long core fooding system was built.The experimental results showed that the oil recovery factor of fue gas-WAG fooding was increased by 21.25%after continuous waterfooding and fue gas-WAG fooding could further enhance oil recovery and reduce water cut signifcantly.A novel material balance model based on storage mechanism was developed to estimate the multicomponent fue gas storage capacity and storage capacity of each component of fue gas in reservoir oil,water and as free gas in the post-waterfooding reservoir.The ultimate storage ratio of fue gas is 16%in the fue gas-WAG fooding process.The calculation results of fue gas storage capacity showed that the injection gas storage capacity mainly consists of N_(2) and CO_(2),only N_(2) exists as free gas phase in cores,and other components of injection gas are dissolved in oil and water.Finally,injection strategies from three perspectives for fue gas storage,EOR,and combination of fue gas storage and EOR were proposed,respectively. 展开更多
关键词 Flue gas storage Enhanced oil recovery Flue gas water-alternating gas Material balance model Injection strategy
下载PDF
International experience of carbon neutrality and prospects of key technologies:Lessons for China 被引量:3
5
作者 Zheng-Meng Hou Ying Xiong +9 位作者 Jia-Shun Luo Yan-Li Fang Muhammad Haris Qian-Jun Chen Ye Yue Lin Wu Qi-Chen Wang Liang-Chao Huang Yi-Lin Guo Ya-Chen Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期893-909,共17页
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev... Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation. 展开更多
关键词 International experience Carbon reduction technologies Carbon neutrality Energy transition Underground energy storage Carbon capture utilization and storage(CCUS)
下载PDF
Finite Element Investigation of Flow Field Below Asymmetric Drill Bits for Reverse Circulation in Drilling Tight Oil and Gas Reservoirs
6
作者 Yi Luo Erxiu Shi +2 位作者 Yin Feng Boyun Guo Liehui Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第10期105-122,共18页
Development of unconventional tight oil and gas reservoirs such as shale pays presents a huge challenge to the petroleum industry due to the naturally low permeability of shale formations and thus low productivity of ... Development of unconventional tight oil and gas reservoirs such as shale pays presents a huge challenge to the petroleum industry due to the naturally low permeability of shale formations and thus low productivity of oil and gas wells.Shale formations are also vulnerable to the contamination of the water in the drilling and completion fluids,which further reduces reservoir permeability.Although gas-drilling(drilling with gas)has been used to address the issue,several problems such as formation water influx,wellbore collapse,excessive gas volume requirement and hole cleaning in horizontal drilling,still hinder its application.A new technique called gas-lift drilling has recently been proposed to solve these problems,but the optimal design of drilling operation requires a thorough investigation of fluid flow field below the asymmetric drill bits for evaluating the fluid power needed to clean the bottom hole.Such an investigation is conducted in this work based on the Finite Element Method(FEM)implemented in an open source computational framework,FEniCS.Pressure and flow velocity fields were computed for three designs of drill bit face characterized by radial bit blades and one eccentric orifice of discharge.One of the designs is found superior over the other two because it generates relatively uniform flow velocities between blades and provides a balanced fluid power needed to clean all the bit teeth on each bit blade.To quantify the capability of borehole cleanup presented by three drill bit designs,the energy per unit volume is calculated in each region of drill bit and compared with the required value suggested by the literature.In addition,the developed FEM model under FEniCS framework provides engineers an accurate tool for optimizing drill bit design for efficiently gas-lift drilling unconventional tight oil and gas reservoirs. 展开更多
关键词 Gas-lift DRILLING reverse CIRCULATION UNCONVENTIONAL RESERVOIRS bit design.
下载PDF
The control effect of low-amplitude structure on oil-gaswater enrichment and development performance of ultra-low permeability reservoirs
7
作者 WANG Jianmin ZHANG San +4 位作者 DU Wei LI Le QIAO Zhen ZHANG Jun DUAN Mengyue 《Petroleum Exploration and Development》 2019年第4期767-778,共12页
Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were... Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were discussed by using the methods of dense well pattern, multi-factor geological modeling, macro and micro analysis and static and dynamic analysis. The results show that the low-amplitude structure always had a significant control and influence on the distribution and accumulation of original hydrocarbon and water and the evolution trend of water flooding performance in ultra-low permeability reservoirs, and it was not only the direction of oil and gas migration, but also a favorable place for relative accumulation of oil and gas. The controlling effect of low-amplitude structure on ultra-low permeability reservoir mainly depended on its tectonic amplitude and scale;the larger the tectonic amplitude and scale, and the higher the tectonic position of the low amplitude structure, the better the reservoir characteristic parameters, oil and gas enrichment degree and development effect, and the larger the spatial scope it controlled and influenced;water cut and oil well output always fluctuated orderly with the height of the low-amplitude structure;the dynamic response of waterflooding was closely related to the relative structural position of the injection and production wells;the injected water always advanced to the low-lying area of the structure first and then moved up to the high-lying area of the structure gradually;with the continuous expansion of the flooded area, part of the oil and gas in the low-lying part of the structure was forced to be distributed to the high part of the structure, resulting in a new oil and gas enrichment, so that the dynamic reserves of oil wells in the high part increased, and the production capacity remained stable. 展开更多
关键词 ultra-low PERMEABILITY RESERVOIRS LOW-AMPLITUDE structure OIL-GAS-WATER ENRICHMENT development dynamics control effect
下载PDF
Effects of cosolvents on CO_(2) displacement of shale oil and carbon storage
8
作者 ZHANG Yifan WANG Lu +5 位作者 ZOU Rui ZOU Run MENG Zhan HUANG Liang LIU Yisheng LEI Hao 《Petroleum Exploration and Development》 SCIE 2023年第6期1509-1518,共10页
Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent d... Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent displacement of crude oil in shale nanopores and carbon storage was simulated and the influencing factors of displacement and storage were analyzed. It is shown that the attraction of the quartz wall to shale oil increases with the degree of hydroxylation. The higher the degree of quartz hydroxylation, the more difficult it is to extract the polar components of shale oil. Nanopore size also has a great impact on shale oil displacement efficiency. The larger the pore size, the higher the shale oil displacement efficiency. The closer the cosolvent molecules are to the polarity of the shale oil, the higher the mutual solubility of CO_(2) and shale oil. The more the non-polar components of shale oil, the lower the mutual solubility of CO_(2) and shale oil with highly polar cosolvent. Ethyl acetate is more effective in stripping relatively high polar shale oil, while dimethyl ether is more effective in stripping relatively low polar shale oil. Kerogen is highly adsorptive, especially to CO_(2). The CO_(2) inside the kerogen is not easy to diffuse and leak, thus allowing for a stable carbon storage. The highest CO_(2) storage rate is observed when dimethyl ether is used as a cosolvent, and the best storage stability is observed when ethyl acetate is used as a cosolvent. 展开更多
关键词 molecular dynamics shale oil NANOPORE carbon dioxide COSOLVENT displacement efficiency storage effect
下载PDF
Analysis of fracture propagation and shale gas production by intensive volume fracturing
9
作者 Qingdong ZENG Long BO +4 位作者 Lijun LIU Xuelong LI Jianmeng SUN Zhaoqin HUANG Jun YAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1385-1408,共24页
This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation... This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production. 展开更多
关键词 fracture network propagation shale gas fow intensive volume fracturing displacement discontinuity method(DDM) embedded discrete fracture model(EDFM)
下载PDF
Formation and destruction processes of upper Sinian oil-gas pools in the Dingshan-Lintanchang structural belt, southeast Sichuan Basin, China 被引量:20
10
作者 Liu Shugen Zhang Zhijing Huang Wenming Wang Guozhi Sun Wei Xu Guosheng Yuan Haifeng Zhang Changjun Deng Bin 《Petroleum Science》 SCIE CAS CSCD 2010年第3期289-301,共13页
The lower Cambrian Niutitang Formation hydrocarbon source rocks at the Dingshan-Lintanchang structure in the southeast Sichuan Basin were of medium-good quality with two excellent hydrocarbon-generating centers develo... The lower Cambrian Niutitang Formation hydrocarbon source rocks at the Dingshan-Lintanchang structure in the southeast Sichuan Basin were of medium-good quality with two excellent hydrocarbon-generating centers developed in the periphery areas, with a possibility of forming a medium to large-sized oil-gas field. Good reservoir rocks were the upper Sinian (Dengying Formation) dolomites. The mudstone in the lower Cambrian Niutitang Formation with a good sealing capacity was the cap rock. The widely occurring bitumen in the Dengying Formation indicates that a paleo oil pool was once formed in the study area. The first stage of paleo oil pool formation was maturation of the lower Cambrian source rocks during the late Ordovician. Hydrocarbon generation from the lower Cambrian source rocks stopped due to the Devonian-Carboniferous uplifting. The lower Cambrian source rocks then restarted generation of large quantities of hydrocarbons after deposition of the middle Permian sediments. This was the second stage of the paleo oil pool formation. The oil in the paleo oil pool began to crack during the late Triassic and a paleo gas pool was formed. This paleo gas pool was destroyed during the Yanshan-Himalayan folding, uplifting and denudation. Bitumen can be widely seen in the Dengying Formation in wells and outcrops in the Sichuan Basin and its periphery areas. This provides strong evidence that the Dengying Formation in the Sichuan Basin and its periphery areas was once an ultra-large structural-lithologic oil-gas field, which was damaged during the Yanshan-Himalayan period. 展开更多
关键词 四川盆地 油气藏 破坏过程 震旦系 构造带 东南部 喜马拉雅期 中国
下载PDF
Necessity and feasibility of improving the residual resistance factor of polymer flooding in heavy oil reservoirs 被引量:16
11
作者 Shi Leiting Ye Zhongbin Zhang Zhuo Zhou Changjiang Zhu Shanshan Guo Zhidong 《Petroleum Science》 SCIE CAS CSCD 2010年第2期251-256,共6页
The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oi... The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oil. On the basis of mobility control theory, increasing the residual resistance factor not only reduces the water-oil mobility ratio but also decreases the requirement for viscosity enhancement of the polymer solution. The residual resistance factor caused by hydrophobic associating polymer solution is higher than that caused by polyacrylamide solution in brine containing high concentrations of calcium and magnesium ions. The results of numerical simulations show that the polymer flooding efficiency improved by increasing the residual resistance factor is far better than that by only increasing solution viscosity. The recovery factor of heavy oil reservoirs (70 mPa·s) can be enhanced by hydrophobic associating polymer solution of high residual resistance factor (more than 3) and high effective viscosity (24 mPa·s). Therefore, increasing the residual resistance factor of the polymer solution not only decreases the requirement for the viscosity of polymer solution injected into heavy oil reservoirs but also is favorable to enhanced oil recovery during polymer flooding. 展开更多
关键词 残余阻力系数 聚合物驱油 稠油油藏 聚合物溶液 聚丙烯酰胺溶液 剩余阻力系数 溶液粘度 疏水缔合
下载PDF
Formation and evolution of Sinian oil and gas pools in typical structures, Sichuan Basin, China 被引量:7
12
作者 Yuan Haifeng Liang Jiaju +3 位作者 Gong Deyu Xu Guosheng Liu Shugen Wang Guozhi 《Petroleum Science》 SCIE CAS CSCD 2012年第2期129-140,共12页
The only major breakthrough in the exploration of the Sinian of the Sichuan Basin has been the Weiyuan gas field. Taking the typical structures in the Sichuan Basin as examples, an apatite fission track simulation was... The only major breakthrough in the exploration of the Sinian of the Sichuan Basin has been the Weiyuan gas field. Taking the typical structures in the Sichuan Basin as examples, an apatite fission track simulation was applied to constrain the thermal evolutionary history of the source rocks in this study. Combined with trap formation and evolution, the formation, destruction, and accumulation history of the Sinian reservoirs were analyzed from a dynamic perspective. The Sinian reservoirs underwent several primary stages: the paleo-reservoir formation and destruction in the late Silurian, hydrocarbon recharge in the Permian-Triassic, the cracking of oil to gas and dissolved-gas in the late Triassic-Mid-Late Jurassic, and the exsolution and accumulation of dissolved-gas as a result of episodic uplift since the Late Cretaceous. The exsolution process of dissolved-gas is of great significance to the accumulation of natural gas. The formation of the Weiyuan gas field is also related to this process. The Sinian in the Sichuan Basin has a broad exploration prospect, and exploration targets focused on the Leshan-Longnüsi Paleo-uplift tectonic zone with weak influences on potential hydrocarbon reservoirs from the late tectonism and transformation. 展开更多
关键词 热演化历史 四川盆地 典型结构 震旦系 油气藏 磷灰石裂变径迹 溶解气体 中国
下载PDF
The tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy: A case study in the Wangyao Oilfield of Ordos Basin, China 被引量:6
13
作者 Zhao Xiaoming Liu Li +2 位作者 Hu Jialiang Zhou Xiaojun Li Min 《Petroleum Science》 SCIE CAS CSCD 2014年第3期363-375,共13页
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit... Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang611 Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling. 展开更多
关键词 低渗透砂岩油藏 鄂尔多斯盆地 构造裂缝 露头 建模 类比 基础 油田
下载PDF
The effects of temperature and acid number of crude oil on the wettability of acid volcanic reservoir rock from the Hailar Oilfi eld 被引量:5
14
作者 Xie Quan He Shunli Pu Wanfeng 《Petroleum Science》 SCIE CAS CSCD 2010年第1期93-99,共7页
Wettability of acid volcanic reservoir rock from the Hailar Oilfi eld,China,was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modif ie... Wettability of acid volcanic reservoir rock from the Hailar Oilfi eld,China,was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modif ied oils and their resultant acid numbers were:A(2.09 mg KOH/g) ,B(0.75 mg KOH/g) ,C(0.47 mg KOH/g) ,D(0.30 mg KOH/g) ,and E(0.18 mg KOH/g) . Contact angles and improved Amott water indexes were measured to study the effects of temperature and acid number on the wettability of the acid volcanic reservoir rock. Experimental results indicated that the wettability was not sensitive to variation in temperature when using the same oil,but the acid number of the crude oil was a key factor in changing the wettability of the rock. The Amott water index,Iw was an exponential function of the acid number,and the Amott water index increased as the acid number decreased(i.e. Amott water index exponentially decreased with the acid number increase) . The Iw value of the core saturated with oil A,with an acid number of 2.09 mg KOH/g,ranged from 0.06 to 0.11,which indicated low water wetness. If the acid number of the oil decreased to 0.18 mg KOH/g,the Iw value increased to 0.95,which indicated strong water wetness. The contact angle decreased from 80o to 35o when the aid number decreased from 0.75 to 0.18 mg KOH/g,indicating a change towards more water wet conditions. The oil recovery by spontaneous imbibition of water also increased as the acid number of the oil decreased. As an example,at 80 oC,the recovery of Oil A with an acid number of 2.09 mg KOH/g was only 7.6%,while Oil E with an acid number of 0.18 mg KOH/g produced 56.4%,i.e. an increase of 48.8%. 展开更多
关键词 岩石润湿性 酸性火山岩 原油酸值 海拉尔油田 温度变化 储集岩 特征值屈曲分析 氢氧化钾
下载PDF
Three-Dimensional Modelling of a Multi-Layer Sandstone Reservoir: the Sebei Gas Field, China 被引量:5
15
作者 OU Chenghua WANG Xiaolu +1 位作者 LI Chaochun HE Yan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第1期209-221,共13页
Multi-layer sandstone reservoirs occur globally and are currently in international production.The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-res... Multi-layer sandstone reservoirs occur globally and are currently in international production.The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling.In view of the special geological features,such as the vertical architecture of sandstone and mudstone interbeds,the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution,we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs.The procedure comprises two-phase structural modelling,two-phase facies modelling and modeUing of two types of reservoir properties.Using this procedure,we established models of the formation structure,sand body structure and microfacies,reservoir facies and properties including porosity,permeability and gas saturation and provided a 3D fine-scale,systematic characterization of the Sebei multi-layer sandstone gas field,China.This new procedure,validated by the Sebei gas field,can be applied to characterize similar multi-layer sandstone reservoirs. 展开更多
关键词 砂岩油藏 三维模型 涩北气田 中国 储层沉积相 储层模型 垂直结构 结构模型
下载PDF
A FEM-DFN model for the interaction and propagation of multi-cluster fractures during variable fluid-viscosity injection in layered shale oil reservoir 被引量:5
16
作者 Chu-Hao Huang Hai-Yan Zhu +3 位作者 Jian-Dong Wang Jian Han Guang-Qing Zhou Xuan-He Tang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2796-2809,共14页
To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model ... To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model coupled with flow,stress and damage is proposed.A traction-separation law is used to describe the mixed-mode response of the damaged adhesive fractures,and the cubic law is used to describe the fluid flow within the fractures.The rock deformation is controlled by the in-situ stress,fracture cohesion and fluid pressure on the hydraulic fracture surface.The coupled finite element equations are solved by the explicit time difference method.The effects of the fracturing treatment parameters including fluid viscosity,pumping rate and cluster spacing on the geometries of multifractures are investigated.The results show that variable fluid-viscosity injection can improve the complexity of the fracture network and height of the main fractures simultaneously.The pumping rate of15 m^(3)/min,variable fluid-viscosity of 3-9-21-36-45 mPa s with a cluster spacing of 7.5 m is the ideal treatment strategy.The field application shows that the peak daily production of the application well with the optimized injection procedu re of variable fluid-viscosity fracturing is 171 tons(about 2.85 times that of the adjacent well),which is the highest daily production record of a single shale oil well in China,marking a strategic breakthrough of commercial shale oil production in the Jiyang Depression,Shengli Oilfield.The variable fluid-viscosity fracturing technique is proved to be very effective for improving shale oil production. 展开更多
关键词 Shale oil reservoir FEM-DFN model Fracture propagation Variable fluid-viscosity injection Bedding planes
下载PDF
Geochemical characteristics and genetic mechanism of the high-N2 shale gas reservoir in the Longmaxi Formation, Dianqianbei Area, China 被引量:3
17
作者 Ji-Lin Li Ting-Shan Zhang +6 位作者 Yan-Jun Li Xing Liang Xin Wang Jie-Hui Zhang Zhao Zhang Hong-Lin Shu Da-Qian Rao 《Petroleum Science》 SCIE CAS CSCD 2020年第4期939-953,共15页
As an important pilot target for shale gas exploration and development in China,the Longmaxi Formation shale in the Dianqianbei Area is characterized by high content of nitrogen,which severely increases exploration ri... As an important pilot target for shale gas exploration and development in China,the Longmaxi Formation shale in the Dianqianbei Area is characterized by high content of nitrogen,which severely increases exploration risk.Accordingly,this study explores the genesis of shale gas reservoir and the mechanism of nitrogen enrichment through investigating shale gas compositions,isotope features,and geochemical characteristics of associated gases.The high-nitrogen shale gas reservoir in the Longmaxi Formation is demonstrated to be a typical dry gas reservoir.Specifically,the alkane carbon isotope reversal is ascribed to the secondary cracking of crude oil and the Rayleigh fractionation induced by the basalt mantle plume.Such a thermogenic oil-type gas reservoir is composed of both oil-cracking gas and kerogen-cracking gas.The normally high nitrogen content(18.05%-40.92%) is attributed to organic matter cracking and thermal ammoniation in the high-maturity stage.Specifically,the high heat flow effect of the Emeishan mantle plume exacerbates the thermal cracking of organic matter in the Longmaxi Formation shale,accompanied by nitrogen generation.In comparison,the abnormally high nitrogen content(86.79%-98.54%) is ascribed to the communication between the atmosphere and deep underground fluids by deep faults,which results in hydrocarbon loss and nitrogen intrusion,acting as the key factor for deconstruction of the primary shale gas reservoir.Results of this study not only enrich research on genetic mechanism of high-maturity N_@ shale gas reservoirs,but also provide theoretical guidance for subsequent gas reservoir resource evaluation and well-drilling deployment in this area. 展开更多
关键词 Longmaxi Formation Shale gas reservoir ISOTOPE High nitrogen content Genetic mechanism
下载PDF
hale gas reservoir modeling and production evaluation considering complex gas transport mechanisms and dispersed distribution of kerogen 被引量:1
18
作者 Jie Zeng Jishan Liu +3 位作者 Wai Li Yee-Kwong Leong Derek Elsworth Jianchun Guo 《Petroleum Science》 SCIE CAS CSCD 2021年第1期195-218,共24页
Stimulated shale reservoirs consist of kerogen,inorganic matter,secondary and hydraulic fractures.The dispersed distribution of kerogen within matrices and complex gas flow mechanisms make production evaluation challe... Stimulated shale reservoirs consist of kerogen,inorganic matter,secondary and hydraulic fractures.The dispersed distribution of kerogen within matrices and complex gas flow mechanisms make production evaluation challenging.Here we establish an analytical method that addresses kerogen-inorganic matter gas transfer,dispersed kerogen distribution,and complex gas flow mechanisms to facilitate evaluating gas production.The matrix element is defined as a kerogen core with an exterior inorganic sphere.Unlike most previous models,we merely use boundary conditions to describe kerogen-inorganic matter gas transfer without the instantaneous kerogen gas source term.It is closer to real inter-porosity flow conditions between kerogen and inorganic matter.Knudsen diffusion,surface diffusion,adsorption/desorption,and slip corrected flow are involved in matrix gas flow.Matrix-fracture coupling is realized by using a seven-region linear flow model.The model is verified against a published model and field data.Results reveal that inorganic matrices serve as a major gas source especially at early times.Kerogen provides limited contributions to production even under a pseudo-steady state.Kerogen properties’influence starts from the late matrix-fracture inter-porosity flow regime,while inorganic matter properties control almost all flow regimes except the early-mid time fracture linear flow regime.The contribution of different linear flow regions is also documented. 展开更多
关键词 Analytical solution Shale gas reservoir Well performance Kerogen and inorganic matter
下载PDF
A phase-field model for simulating the propagation behavior of mixed-mode cracks during the hydraulic fracturing process in fractured reservoirs
19
作者 Dan ZHANG Liangping YI +4 位作者 Zhaozhong YANG Jingqiang ZHANG Gang CHEN Ruoyu YANG Xiaogang LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期911-930,共20页
A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the dr... A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the driving force for the phase field consists of both tensile and shear components,with the fluid contribution primarily manifesting in the tension driving force.The displacement and pressure are solved simultaneously by an implicit method.The numerical solution's iterative format is established by the finite element discretization and Newton-Raphson(NR)iterative methods.The correctness of the model is verified through the uniaxial compression physical experiments on fluid-pressurized rocks,and the limitations of the hydraulic fracture expansion phase-field model,which only considers mode I fractures,are revealed.In addition,the influence of matrix mode II fracture toughness value,natural fracture mode II toughness value,and fracturing fluid injection rate on the hydraulic fracture propagation in porous media with natural fractures is studied. 展开更多
关键词 mixed-mode crack hydraulic fracturing poro-elasticity phase-field method(PFM)
下载PDF
Failure mechanism and influencing factors of cement sheath integrity under alternating pressure 被引量:1
20
作者 Kuan-Hai Deng Nian-Tao Zhou +4 位作者 Yuan-Hua Lin Yan-Xian Wu Jie Chen Chang Shu Peng-Fei Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2413-2427,共15页
The failure of cement sheath integrity can be easily caused by alternating pressure during large-scale multistage hydraulic fracturing in shale-gas well.An elastic-plastic mechanical model of casing-cement sheath-form... The failure of cement sheath integrity can be easily caused by alternating pressure during large-scale multistage hydraulic fracturing in shale-gas well.An elastic-plastic mechanical model of casing-cement sheath-formation(CSF)system under alternating pressure is established based on the Mohr-Coulomb criterion and thick-walled cylinder theory,and it has been solved by MATLAB programming combining global optimization algorithm with Global Search.The failure mechanism of cement sheath integrity is investigated,by which it can be seen that the formation of interface debonding is mainly related to the plastic strain accumulation,and there is a risk of interface debonding under alternating pressure,once the cement sheath enters plasticity whether in shallow or deep well sections.The matching relationship between the mechanical parameters(elastic modulus and Poisson's ratio)of cement sheath and its integrity failure under alternating pressure in whole well sections is studied,by which it has been found there is a“critical range”in the Poisson's ratio of cement sheath.When the Poisson's ratio is below the“critical range”,there is a positive correlation between the yield internal pressure of cement sheath(SYP)and its elastic modulus.However,when the Poisson's ratio is above the“critical range”,there is a negative correlation.The elastic modulus of cement sheath is closely related to its Poisson's ratio,and restricts each other.Scientific and reasonable matching between mechanical parameters of cement sheath and CSF system under different working conditions can not only reduce the cost,but also protect the cement sheath integrity. 展开更多
关键词 Casing-cement sheath-formation system Mechanical model Matching relationship Cement sheath integrity Critical range Mechanical parameters
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部