期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Oriented Generation of Novel Thermo-Sensitive Genic Male Sterile Lines with Improved Grain Shape and Outcrossing Rate in Early-Season Rice
1
作者 ZHANG Huali CHEN Junyu +5 位作者 LI Ruiqing WANG Huimei DAI Dongqing LIANG Minmin WU Mingyue MA Liangyong 《Rice science》 SCIE CSCD 2024年第2期129-133,I0001-I0016,共21页
Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which... Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which is largely determined by the stigma exsertion rate(SER).In this study,we constructed mutants of male sterility lines with improved grain length(GL)and SER in three elite early-season indica rice varieties through targeted manipulation of the TMS5 and GS3 genes using CRISPR/Cas9-mediated multiplex systems.We obtained a series of marker-free gs3 single mutants and gs3tms5 double mutants with significantly higher SER,longer grains,and increased 1000-grain weight compared with the wild type(WT).Importantly,the typically thermo-sensitive genic male sterile(TGMS)trait with a higher SER was observed in gs3tms5 mutants,and their F1 hybrids exhibited remarkable improvements in grain shape and yield-related traits.Our findings provided an efficient method to generate new valuable TGMS germplasm with improved SER through the mutagenesis of GS3 and TMS5 synergistically,and demonstrated that GS3 had pleiotropic effects on grain size,SER,and grain quality in early-season indica rice. 展开更多
关键词 STERILE ELITE SEASON
下载PDF
OsbZIP53 Negatively Regulates Immunity Response by Involving in Reactive Oxygen Species and Salicylic Acid Metabolism in Rice
2
作者 WU Lijuan HAN Cong +5 位作者 WANG Huimei HE Yuchang LIN Hai WANG Lei CHEN Chen E Zhiguo 《Rice science》 SCIE CSCD 2024年第2期190-202,I0022-I0028,共20页
The basic region/leucine zipper(bZIP)transcription factors play important roles in plant development and responses to abiotic and biotic stresses.OsbZIP53 regulates resistance to Magnaporthe oryzae in rice by analyzin... The basic region/leucine zipper(bZIP)transcription factors play important roles in plant development and responses to abiotic and biotic stresses.OsbZIP53 regulates resistance to Magnaporthe oryzae in rice by analyzing APIP5-RNAi transgenic plants.To further investigate the biological functions of OsbZIP53,we generated osbzip53 mutants using CRISPR/Cas9 editing and also constructed OsbZIP53 over-expression transgenic plants.Comprehensive analysis of phenotypical,physiological,and transcriptional data showed that knocking-out OsbZIP53 not only improved disease resistance by inducing a hypersensitivity response in plants,but also regulated the immune response through the salicylic acid pathway.Specifically,disrupting OsbZIP53 increased H2O2 accumulation by promoting reactive oxygen species generation through up-regulation of several respiratory burst oxidase homologs(Osrboh genes)and weakened H2O2 degradation by directly targeting OsMYBS1.In addition,the growth of osbzip53 mutants was seriously impaired,while OsbZIP53 over-expression lines displayed a similar phenotype to the wild type,suggesting that OsbZIP53 has a balancing effect on rice immune response and growth. 展开更多
关键词 OsbZIP53 hypersensitive response reactive oxygen species metabolism rice immunity salicylic acid transcription factor
下载PDF
Leaf Morphology Genes SRL1 and RENL1 Co-Regulate Cellulose Synthesis and Affect Rice Drought Tolerance
3
作者 LIU Dan ZHAO Huibo +18 位作者 WANG Zi’an XU Jing LIU Yiting WANG Jiajia CHEN Minmin LIU Xiong ZHANG Zhihai CEN Jiangsu ZHU Li HU Jiang REN Deyong GAO Zhenyu DONG Guojun ZHANG Qiang SHEN Lan LI Qing QIAN Qian HU Songping ZHANG Guangheng 《Rice science》 SCIE CSCD 2024年第1期103-117,I0020-I0022,共18页
The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between... The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice. 展开更多
关键词 CELLULOSE cell wall drought tolerance leaf morphology RICE
下载PDF
OsbZIP01 Affects Plant Growth and Development by Regulating OsSD1 in Rice
4
作者 DONG Xinli ZHOU Yang +5 位作者 ZHANG Yaqi RONG Fuxi DU Jiahong HONG Zheyuan HU Peisong LÜYusong 《Rice science》 SCIE CSCD 2024年第1期77-86,I0018,I0019,共12页
As the‘Green Revolution’gene,SD1(encoding GA20ox2),has been widely applied to improve yield in rice breeding.However,research on its transcriptional regulation is limited.Here,we identified a transcription factor Os... As the‘Green Revolution’gene,SD1(encoding GA20ox2),has been widely applied to improve yield in rice breeding.However,research on its transcriptional regulation is limited.Here,we identified a transcription factor OsbZIP01,which can suppress the expression of SD1 and regulate gibberellin(GA)biosynthesis in rice.Knockout mutants of OsbZIP01 exhibited increased plant height,while the overexpression lines showed a semi-dwarf phenotype and diminished germination rate.Furthermore,the semi-dwarf phenotype of OE-bZIP01,was caused by the reduced internode length,which was accompanied by a thin stem width.The predominant expression of OsbZIP01 was observed in leaves and sheaths.OsbZIP01 protein was localized in the nucleus and showed transcriptional repression activity.In addition,OsbZIP01 could directly bind to the promoter of the OsSD1 gene,and inhibit its transcription.The semi-dwarf phenotype of OE-bZIP01 could be rescued by exogenous GA_(3).Meanwhile,the bzip01 sd1 double mutant showed a shorter shoot length compared with the wild type,indicating that OsbZIP01 regulated plant growth mainly through the GA biosynthesis pathway.Collectively,OsbZIP01 negatively regulates GA biosynthesis by restraining SD1 transcription,thereby affecting plant growth and development. 展开更多
关键词 OsbZIP01 SD1 gibberellin biosynthesis dwarf and germination
下载PDF
Rice AGL1 determines grain size and sterile lemma identity
5
作者 Haiping Yu An Wang +4 位作者 Guangheng Zhang Guojun Dong Longbiao Guo Qian Qian Deyong Ren 《The Crop Journal》 SCIE CSCD 2024年第2期630-634,共5页
The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in ... The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs. 展开更多
关键词 Abnormal grain and sterile lemma 1 Oryza sativa Grain size Rudimentary glume
下载PDF
Effects of Nitrogen-Regulating Gene AreA on Growth,Pathogenicity,and Fumonisin Synthesis of Fusarium proliferatum
6
作者 SUN Lei CHEN Xu +5 位作者 ZHOU Qianya ZHANG Tianlei YU Qian LIU Lianmeng HUANG Shiwen WANG Ling 《Rice science》 SCIE CSCD 2024年第1期10-13,I0013-I0017,共9页
Rice spikelet rot disease not only threatens rice yields but also poses risks to humans and animals due to the production of the category 2B carcinogen fumonisins by the pathogen Fusarium proliferatum.Nitrogen(N)metab... Rice spikelet rot disease not only threatens rice yields but also poses risks to humans and animals due to the production of the category 2B carcinogen fumonisins by the pathogen Fusarium proliferatum.Nitrogen(N)metabolism is known to have a significant influence on fungal growth and the synthesis of secondary metabolites.AreA is a global N regulatory gene belonging to the GATA transcription factor family.In this study,we observed that theΔAreA mutant exhibited a notable reduction in growth rate and conidium production.Pathogenicity experiments revealed thatΔAreA had almost lost its ability to infect rice spikelets. 展开更多
关键词 METABOLISM FUSARIUM GROWTH
下载PDF
Genetic and environmental control of rice tillering
7
作者 Yuping Yan Chaoqing Ding +5 位作者 Guangheng Zhang Jiang Hu Li Zhu Dali Zeng Qian Qian Deyong Ren 《The Crop Journal》 SCIE CSCD 2023年第5期1287-1302,共16页
Increasing tiller number is a target of high-yield rice breeding. Identification of tiller-defect mutants and their corresponding genes is helpful for clarifying the molecular mechanism of rice tillering. Summarizing ... Increasing tiller number is a target of high-yield rice breeding. Identification of tiller-defect mutants and their corresponding genes is helpful for clarifying the molecular mechanism of rice tillering. Summarizing research progress on the two processes of rice tiller formation, namely the formation and growth of axillary meristem, this paper reviews the effects of genetic factors, endogenous hormones, and exogenous environment on rice tillering, finding that multiple molecular mechanisms and signal pathways regulating rice tillering cooperate rice tillering, and discusses future research objectives and application of its regulatory mechanism. Elucidation of theis mechanism will be helpful for breeding high-yielding rice cultivars with ideal plant type via molecular design breeding. 展开更多
关键词 Rice tiller Axillary meristem Tiller bud Genetic and external factors Regulatory mechanism
下载PDF
Disruption of LEAF LESION MIMIC 4 affects ABA synthesis and ROS accumulation in rice
8
作者 Hao Wu Gaoxing Dai +11 位作者 Rao Yuchun Kaixiong Wu Junge Wang Peng Hu Yi Wen Yueying Wang Lixin Zhu Bingze Chai Jialong Liu Guofu Deng Qian Qian Jiang Hu 《The Crop Journal》 SCIE CSCD 2023年第5期1341-1352,共12页
Lesion mimic mutants(LMMs) are advantageous materials for studying programmed cell death(PCD).Although some rice LMM genes have been cloned, the diversity of functions of these genes indicates that the mechanism of ce... Lesion mimic mutants(LMMs) are advantageous materials for studying programmed cell death(PCD).Although some rice LMM genes have been cloned, the diversity of functions of these genes indicates that the mechanism of cell death regulation in LMMs needs further study. In this study, we identified a rice light-dependent leaf lesion mimic mutant 4(llm4) that showed abnormal chloroplast structure, photoinhibition, reduced photosynthetic protein levels, massive accumulation of reactive oxygen species(ROS), and PCD. Map-based cloning and complementation testing revealed that LLM4 encodes zeaxanthin epoxidase(ZEP), an enzyme involved in the xanthophyll cycle, which functions in plant photoprotection,ROS scavenging, and carotenoid and abscisic acid(ABA) biosynthesis. The ABA content was decreased,and the contents of 24 carotenoids differed between the llm4 mutant and the wild type(WT). The llm4mutant showed reduced dormancy and greater sensitive to ABA than the WT. We concluded that the mutation of LLM4 resulted in the failure of xanthophyll cycle, in turn causing ROS accumulation. The excessive ROS accumulation damaged chloroplast structure and induced PCD, leading eventually to the formation of lesion mimics. 展开更多
关键词 RICE Lesion mimic Reactive oxygen species Programmed cell death Zeaxanthin epoxidase Xanthophyll cycle CAROTENOID Abscisic acid
下载PDF
Development and Application of Prime Editing in Plants
9
作者 LIU Tingting ZOU Jinpeng +3 位作者 YANG Xi WANG Kejian RAO Yuchun WANG Chun 《Rice science》 SCIE CSCD 2023年第6期509-522,共14页
Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targe... Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targeted genomic modifications.Moreover,the prime editing system,derived from the CRISPR/Cas system,has opened the door for even more precise genome editing.Prime editing has the capability to facilitate all 12 types of base-to-base conversions,as well as desired insertions or deletions of fragments,without inducing double-strand breaks and requiring donor DNA templet.In a short time,prime editing has been rapidly verified as functional in various plants,and can be used in plant genome functional analysis as well as precision breeding of crops.In this review,we summarize the emergence and development of prime editing,highlight recent advances in improving its efficiency in plants,introduce the current applications of prime editing in plants,and look forward to future prospects for utilizing prime editing in genetic improvement and precision molecular breeding. 展开更多
关键词 prime editing CRISPR/Cas precision genome editing crop breeding
下载PDF
Effect of GW8 Gene Editing on Appearance Quality of Erect-Panicle Type (dep1) Japonica Rice
10
作者 MAO Ting CHEN Hongfa +9 位作者 LI Xin LIU Yan ZHONG Shuncheng WANG Shiyu ZHAO Yizhou ZHANG Zhan NI Shanjun HUANG He LI Xu HU Shikai 《Rice science》 SCIE CSCD 2023年第5期359-363,I0002-I0006,共10页
Most high-yielding japonica rice varieties in China carry dep1,a multi-effective regulator of plant architecture and grain shape,resulting in erect panicle with short and round grain shape.However,its appearance quali... Most high-yielding japonica rice varieties in China carry dep1,a multi-effective regulator of plant architecture and grain shape,resulting in erect panicle with short and round grain shape.However,its appearance quality needs to be improved since long-grain rice is favored by the market.GW8 is a dominant gene regulating grain shape,and its loss-of-function genotype leads to elongated grains with a better quality in appearance. 展开更多
关键词 PANICLE GRAIN YIELDING
下载PDF
Carbon Catabolite Repressor UvCreA is Required for Development and Pathogenicity in Ustilaginoidea virens
11
作者 XIE Shuwei SHI Huanbin +4 位作者 WEN Hui LIU Zhiquan QIU Jiehua JIANG Nan KOU Yanjun 《Rice science》 SCIE CSCD 2024年第2期203-214,I0029-I0031,共15页
The rice false smut disease, caused by Ustilaginoidea virens, has emerged as a significantglobal threat to rice production. The mechanism of carbon catabolite repression plays a crucial role in theefficient utilizatio... The rice false smut disease, caused by Ustilaginoidea virens, has emerged as a significantglobal threat to rice production. The mechanism of carbon catabolite repression plays a crucial role in theefficient utilization of carbon nutrients and enzyme regulation in the presence of complex nutritionalconditions. Although significant progress has been made in understanding carbon catabolite repression infungi such as Aspergillus nidulans and Magnaporthe oryzae, its role in U. virens remains unclear. Toaddress this knowledge gap, we identified UvCreA, a pivotal component of carbon catabolite repression,in U. virens. Our investigation revealed that UvCreA localized to the nucleus. Deletion of UvCreA resultedin decreased growth and pathogenicity in U. virens. Through RNA-seq analysis, it was found that theknockout of UvCreA led to the up-regulation of 514 genes and down-regulation of 640 genes. Moreover,UvCreA was found to be involved in the transcriptional regulation of pathogenic genes and genesassociated with carbon metabolism in U. virens. In summary, our findings indicated that UvCreA isimportant in fungal development, virulence, and the utilization of carbon sources through transcriptionalregulation, thus making it a critical element of carbon catabolite repression. 展开更多
关键词 Ustilaginoidea virens VIRULENCE carbon catabolite repression Oryza sativa rice false smut
下载PDF
A polygalacturonase gene OsPG1 modulates water homeostasis in rice
12
作者 Qinwen Zou Ranran Tu +8 位作者 Jiajun Wu Tingting Huang Zhihao Sun Zheyan Ruan Hongyu Cao Shihui Yang Xihong Shen Guanghua He Hong Wang 《The Crop Journal》 SCIE CSCD 2024年第1期79-91,共13页
A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unkn... A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unknown.Here,we isolated a rice mutant,dynamic leaf rolling 1(dlr1),characterized by‘leaf unfolding in the morning-leaf rolling at noon-leaf unfolding in the evening’during a sunny day.Water content was decreased in rolled leaves and water sprayed on leaves caused reopening,indicating that in vivo water deficiency induced the leaf rolling.Map-based cloning and expression tests demonstrated that an A1400G single base mutation in Oryza sativa Polygalacturonase 1(OsPG1)/PHOTO-SENSITIVE LEAF ROLLING 1(PSL1)was responsible for the dynamic leaf rolling phenotype in the dlr1 mutant.OsPG1 encodes a polygalacturonase,one of the main enzymes that degrade demethylesterified homogalacturonans in plant cell walls.OsPG1 was constitutively expressed in various tissues and was enriched in stomata.Mutants of the OsPG1 gene exhibited defects in stomatal closure and decreased stomatal density,leading to reduced transpiration and excessive water loss under specific conditions,but had normal root development.Further analysis revealed that mutation of OsPG1 led to reduced pectinase activity in the leaves and increased demethylesterified homogalacturonans in guard cells.Our findings reveal a mechanism by which OsPG1 modulates water homeostasis to control dynamic leaf rolling,providing insights for plants to adapt to environmental variation. 展开更多
关键词 PHOTOSYNTHESIS STOMATA TRANSPIRATION Leaf rolling
下载PDF
Efficient large fragment deletion in plants:double pairs of sgRNAs are better than dual sgRNAs 被引量:1
13
作者 Guoning Zhu Lingling Zhang +8 位作者 Liqun Ma Qing Liu Kejian Wang Jinyan Li Guiqin Qu Benzhong Zhu Daqi Fu Yunbo Luo Hongliang Zhu 《Horticulture Research》 SCIE CSCD 2023年第10期1-3,共3页
Dear Editor,Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)is a powerful and versatile gene editing system that has been extensively utilized in various animals and plants,which holds enormous potent... Dear Editor,Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)is a powerful and versatile gene editing system that has been extensively utilized in various animals and plants,which holds enormous potential and value for scientific research and breeding.However,single-targeted CRISPR can only induce a few base deletions,insertions,or substitution.Ideally,thesemutations result in premature termination of the protein encoded by the target gene,leading to a loss of function[1]. 展开更多
关键词 holds VERSATILE INSERTION
原文传递
ORYZA SATIVA SPOTTED-LEAF 41(OsSPL41) Negatively Regulates Plant Immunity in Rice
14
作者 TAN Jingyi ZHANG Xiaobo +7 位作者 SHANG Huihui LI Panpan WANG Zhonghao LIAO Xinwei XU Xia YANG Shihua GONG Junyi WU Jianli 《Rice science》 SCIE CSCD 2023年第5期426-436,I0017-I0020,共15页
Identification of immunity-associated leucine-rich repeat receptor-like protein kinases(LRR-RLK) is critical to elucidate the LRR-RLK mediated mechanism of plant immunity.Here,we reported the map-based cloning of a no... Identification of immunity-associated leucine-rich repeat receptor-like protein kinases(LRR-RLK) is critical to elucidate the LRR-RLK mediated mechanism of plant immunity.Here,we reported the map-based cloning of a novel rice SPOTTED-LEAF 41(Os SPL41) encoding a putative LRR-RLK protein(Os LRR-RLK41/Os SPL41) that regulated disease responses to the bacterial blight pathogen Xanthomonas oryzae pv.oryzae(Xoo).An 8-bp insertion at position 865 bp in a mutant spotted-leaf 41(spl41) allele led to the formation of purple-brown lesions on leaves.Functional complementation by the wild type allele(Os SPL41) can rescue the mutant phenotype,and the complementary lines showed similar performance to wild type in a number of agronomic,physiological and molecular indices.Os SPL41 was constitutively expressed in all tissues tested,and Os SPL41 contains a typical transmembrane domain critical for its localization to the cell membrane.The mutant exhibited an enhanced level of resistance to Xoo in companion of markedly up-regulated expression of pathogenesis-related genes such as Os PR10a,Os PAL1 and Os NPR1,while the level of salicylic acid was significantly increased in spl41.In contrast,the over-expression lines exhibited a reduced level of H_(2)O_(2) and were much susceptible to Xoo with down-regulated expression of pathogenesis-related genes.These results suggested that Os SPL41 might negatively regulate plant immunity through the salicylic acid signaling pathway in rice. 展开更多
关键词 bacterial blight leucine-rich repeat receptor-like protein kinase plant immunity reactive oxygen species RICE spotted leaf
下载PDF
Research Progress of Genomes of Insect Pests in Paddy Field
15
作者 XU Hongxing ZHAO Xianxin +1 位作者 LÜZhongxian LI Fei 《Rice science》 SCIE CSCD 2023年第5期369-373,共5页
Innovations in sequencing technology and the development of bioinformatics have allowed for studies of the genomics of many rice pests.At present,draft genomes of rice pests including Nilaparvata lugens,Sogatella furc... Innovations in sequencing technology and the development of bioinformatics have allowed for studies of the genomics of many rice pests.At present,draft genomes of rice pests including Nilaparvata lugens,Sogatella furcifera,Laodelphax striatellus,Sesamia inferens,Chilo suppressalis,Scirpophaga incertulas. 展开更多
关键词 PESTS CHILO allowed
下载PDF
Carotenoid isomerase regulates rice tillering and grain productivity by its biosynthesis pathway
16
作者 Chaoqing Ding Zhengji Shao +8 位作者 Yuping Yan Guangheng Zhang Dali Zeng Li Zhu Jiang Hu Zhenyu Gao Guojun Dong Qian Qian Deyong Ren 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第2期172-175,共4页
Tillers are unique inflorescence-like branches in grasses,and their number determines the panicle number,plant architecture,and yield(Shang et al.,2021).Tiller formation mainly undergoes axillary meristem(AM)initiatio... Tillers are unique inflorescence-like branches in grasses,and their number determines the panicle number,plant architecture,and yield(Shang et al.,2021).Tiller formation mainly undergoes axillary meristem(AM)initiation and tiller bud outgrowth(Wang et al.,2018;Yan et al.,2023).The rice(Oryza sativa)KNOX gene OSH1 is expressed in AMs,and an osh1 mutant produces fewer tillers(Tanaka et al.,2015). 展开更多
关键词 SATIVA ORYZA PANICLE
原文传递
Mitigating growth-stress tradeoffs via elevated TOR signaling in rice
17
作者 Wei Li Jiaqi Liu +15 位作者 Zeqi Li Ruiqiang Ye Wenzhen Chen Yuqing Huang Yue Yuan Yi Zhang Huayi Hu Peng Zheng Zhongming Fang Zeng Tao Shiyong Song Ronghui Pan Jian Zhang Jumim Tu Jen Sheen Hao Du 《Molecular Plant》 SCIE CSCD 2024年第2期240-257,共18页
Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,envir... Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation.However,the implementation of water-saving treatments(WsTs)in paddy-field rice has been associated with a substantial yield loss of up to 50%as well as a reduction in nitrogen use efficiency(NUE).In this study,we discovered that the target of rapamycin(TOR)signaling pathway is compromised in rice under WsT.Polysome profiling-coupled transcriptome sequencing(polysome-seq)analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity.Molecular,biochemical,and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST.Intriguingly,ammonium exhibited a greater ability to alleviate growth constraints under WsT by enhancing TOR signaling,which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation.We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5'untranslated region.Collectively,these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE.Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency. 展开更多
关键词 target of rapamycin TOR water-saving rice low-carbon agriculture DROUGHT nitrogen use efficiency NUE
原文传递
Genetic diversity of RNA viruses infecting invertebrate pests of rice
18
作者 Haoran Wang Shufen Chao +13 位作者 Qing Yan Shu Zhang Guoqing Chen Chonghui Mao Yang Hu Fengquan Yu Shuo Wang Liang Lv Baojun Yang Jiachun He Songbai Zhang Liangsheng Zhang Peter Simmonds Guozhong Feng 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第1期175-187,共13页
Invertebrate species are a natural reservoir of viral genetic diversity,and invertebrate pests are widely distributed in crop fields.However,information on viruses infecting invertebrate pests of crops is limited.In t... Invertebrate species are a natural reservoir of viral genetic diversity,and invertebrate pests are widely distributed in crop fields.However,information on viruses infecting invertebrate pests of crops is limited.In this report,we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields.We identified 296 new RNA viruses and 13 known RNA viruses.These viruses clustered within 31 families,with many highly divergent viruses constituting potentially new families and genera.Of the identified viruses,13 RNA viruses clustered within the Fiersviridae family of bacteriophages,and 48 RNA viruses clustered within families and genera of mycoviruses.We detected known rice viruses in novel invertebrate hosts at high abundances.Furthermore,some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species.Fortyfive potential insect pathogenic RNA viruses were detected in invertebrate species.Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity.Cross-species transmission of RNA viruses was detected between invertebrate hosts.Newly identified viral genomes showed extensive variation for invertebrate viral families or genera.Together,the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species,the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases. 展开更多
关键词 invertebrate species metatranscriptome viral diversity viral transmission viral genomes
原文传递
Plant and animal positive-sense single-stranded RNA viruses encode small proteins important for viral infection in their negative-sense strand
19
作者 Pan Gong Qingtang Shen +12 位作者 Mingzhen Zhang Rui Qiao Jing Jiang Lili Su Siwen Zhao Shuai Fu Yu Ma Linhao Ge Yaqin Wang Rosa Lozano-Durán Aiming Wang Fangfang Li Xueping Zhou 《Molecular Plant》 SCIE CSCD 2023年第11期1794-1810,共17页
Positive-sense single-stranded RNA(+ssRNA)viruses,the most abundant viruses of eukaryotes in nature,require the synthesis of negative-sense RNA(-RNA)using their genomic(positive-sense)RNA(+RNA)as a template for replic... Positive-sense single-stranded RNA(+ssRNA)viruses,the most abundant viruses of eukaryotes in nature,require the synthesis of negative-sense RNA(-RNA)using their genomic(positive-sense)RNA(+RNA)as a template for replication.Based on current evidence,viral proteins are translated via viral+RNAs,whereas-RNA is considered to be a viral replication intermediate without coding capacity.Here,we report that plant and animal+ssRNA viruses contain small open reading frames(ORFs)in their-RNA(reverse ORFs[rORFs]).Using turnip mosaic virus(TuMV)as a model for plant+ssRNA viruses,we demonstrate that small proteins encoded by rORFs display specific subcellularlocalizations,and confirm the presence of rORF2 in infected cells through mass spectrometry analysis.The protein encoded by TuMV rORF2 forms punctuate granules that are localized in the perinuclear region and co-localized with viral replication complexes.The rORF2 protein can directly interact with the viral RNA-dependent RNA polymerase,and mutation of rORF2 completely abolishes virus infection,whereas ectopic expression of rORF2 rescues the mutant virus.Furthermore,we show that several rORFs in the-RNA of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)have the ability to suppress type l interferon production and facilitate the infection of ve-sicular stomatitis virus.In addition,we provide evidence that TuMV might utilize internal ribosome entry sites to translate these small rORFs.Taken together,these findings indicate that the-RNA of+ssRNA vi-ruses can also have the coding capacity and that small proteins encoded therein play critical roles in viral infection,revealing a viral proteome larger than previously thought. 展开更多
关键词 positive-sense single-stranded RNA viruses small proteins negative-sense RNA turnip mosaic virus severe acute respiratory syndrome coronavirus 2
原文传递
解锁作物多样性:通过基因组编辑增加遗传变异
20
作者 邹金鹏 黄勇 +1 位作者 高彩霞 王克剑 《Science Bulletin》 SCIE EI CAS CSCD 2024年第3期281-284,共4页
The germplasm resource repository harbors an extensive collection of genetic variations,providing a crucial foundation for the survival and sustainable development of humankind.Throughout history,major agricultural br... The germplasm resource repository harbors an extensive collection of genetic variations,providing a crucial foundation for the survival and sustainable development of humankind.Throughout history,major agricultural breakthroughs have relied on safeguarding,exploring,and harnessing germplasm resources.However,the pursuit of high yields in modern agriculture has led to a continuous reduction in biodiversity,resulting in monocultures and an undesirable homogeneity of breeding materials.As a consequence,germplasm resources are facing the alarming prospect of accelerated loss leading to a decline in crop diversity.Furthermore,modern agricultural varieties encounter formidable challenges in terms of adapting to unfavorable growing conditions,such as environmental heterogeneity and the prevalence of pests and pathogens(Fig.1a).Enhancing the genetic variability of modern crops becomes paramount for fostering innovation within germplasm resources and ensuring food security. 展开更多
关键词 GERMPLASM BREEDING CROPS
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部