期刊文献+
共找到203篇文章
< 1 2 11 >
每页显示 20 50 100
Field experiments on quantifying the contributions of Coreopsis canopies and roots to controlling runoff and erosion on steep loess slopes
1
作者 GONG Yu-wei YU Hai-jun +3 位作者 TIAN Pei GUO Wen-zhao CHEN Lin SHEN Ding-tao 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1402-1423,共22页
Grass recovery is often implemented in the loess area of China to control erosion.However,the effect mechanisms of grass cover on runoff erosion dynamics on steep loess hillslopes is still not clear.Taking the typical... Grass recovery is often implemented in the loess area of China to control erosion.However,the effect mechanisms of grass cover on runoff erosion dynamics on steep loess hillslopes is still not clear.Taking the typical forage species(Coreopsis)in semiarid areas as subject,this study quantified the effects of canopies and roots on controlling slope runoff and erosion.A series of field experiments were conducted in a loess hilly region of China.Field plots(5 m length,2 m width,25°slope gradient)constructed with three ground covers(bare soil;Coreopsis with intact grass;only roots of Coreopsis),were applied with simultaneous simulated rainfall(60mm h^(-1))and upslope inflow(10,30,50,70,90L min^(-1)).The results showed that compared with bare soil,intact grass significantly reduced runoff and soil loss rates by 16.6% and 62.4% on average,and decreased soil erodibility parameter by 66.3%.As inflow rate increased,the reductions in runoff and soil loss rates increased from 2.93 to 14.00 L min^(-1)and 35.11 to 121.96 g m^(-2)min^(-1),respectively.Canopies relatively contributed 66.7% to lowering flow velocity,turbulence,weakening erosive force and increasing hydraulic resistance.Roots played a predominant role in reducing soil loss and enhancing soil antierodibility,with relative contributions of 78.8% and 73.8%.Furthermore,the maximum erosion depth reduced by Coreopsis was at the upper slope section which was previously eroded the most.These results demonstrated the efficiency of Coreopsis cover in controlling runoff and erosion on steep loess slopes,especially under large inflow rates and at upper slope sections.We suggest protecting Coreopsis with intact grass at upper slope sections,while the aboveground grass biomass can be used for grazing or harvesting at middle and lower slope sections,with roots reserved. 展开更多
关键词 Steep loess hillslopes Soil erosion Rill development Runoff hydraulics Spatial variations Coreopsis
原文传递
Ecological stoichiometric comparison of plant-litter-soil system in mixed-species and monoculture plantations of Robinia pseudoacacia,Amygdalus davidiana,and Armeniaca sibirica in the Loess Hilly Region of China
2
作者 Senbao Lu Yunming Chen +1 位作者 Jordi Sardans Josep Penuelas 《Forest Ecosystems》 SCIE CSCD 2023年第3期411-424,共14页
We examined how afforestation patterns impact carbon(C),nitrogen(N),and phosphorus(P)stoichiometry in the plant-litter-soil system.Plant leaf,branch,stem,and root,litter,and soil samples were collected from mixedspeci... We examined how afforestation patterns impact carbon(C),nitrogen(N),and phosphorus(P)stoichiometry in the plant-litter-soil system.Plant leaf,branch,stem,and root,litter,and soil samples were collected from mixedspecies plantations of Robinia pseudoacacia with Amygdalus davidiana(RPAD),R.pseudoacacia with Armeniaca sibirica(RPAS),and monocultures of R.pseudoacacia(RP),A.davidiana(AD),and A.sibirica(AS)in the Loess Hilly Region.The results showed that in mixed-species plantations,R.pseudoacacia had lower leaf N and P concentrations than in monocultures,while both A.davidiana and A.sibirica had higher leaf N and P concentrations.Soil P limited tree growth in both afforestation models.Mixing R.pseudoacacia with A.davidiana or A.sibirica reduced N-limitation during litter decomposition.Average soil total N and P concentrations were higher in RPAS than in RPAD,and both were higher than the corresponding monocultures.The average soil C:N ratio was the smallest in RPAS,while the average soil C:P ratio was larger in RPAS than in RP.A positive correlation between N and P concentrations,and between C:N and C:P ratios,was found in litter and all plant organs of mono-and mixedstands.Alternatively,for N concentration and C:N ratio,the correlations between plant(i.e.,leaf,branch,root)and litter and between plant and soil were inverse between plantation types.RPAD has an increased litter decomposition rate to release N and P,while RPAS has a faster rate of soil N mineralization.RPAD was the best plantation(mixed)to improve biogeochemical cycling,as soil nutrient restrictions,particularly for P-limitation,on trees growth were alleviated.This study thus provides insights into suitable tree selection and management by revealing C:N:P stoichiometry in the plant-litter-soil system under different afforestation patterns. 展开更多
关键词 Stoichiometry PLANT LITTER Soil Tree mixture Loess Plateau
下载PDF
Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process
3
作者 ZHANG Yixin LI Peng +5 位作者 XU Guoce MIN Zhiqiang LI Qingshun LI Zhanbin WANG Bin CHEN Yiting 《Journal of Arid Land》 SCIE CSCD 2023年第4期439-459,共21页
The preceding and succeeding precipitation(PSP)often act together with extreme precipitation(EP),in turn,causing floods,which is an objective component that is often overlooked with regard to summer flood hazards in t... The preceding and succeeding precipitation(PSP)often act together with extreme precipitation(EP),in turn,causing floods,which is an objective component that is often overlooked with regard to summer flood hazards in the arid region of Northwest China.In this study,event-based extreme precipitation(EEP)was defined as continuous precipitation that includes at least one day of EP.We analyzed the spatiotemporal variation characteristics of four EEP types(front EEP,late EEP,balanced EEP,and single day EEP)across the Loess Plateau(LP)based on data acquired from 87 meteorological stations from 1960 to 2019.Precipitation on the LP basically maintained a spatial pattern of"low in the northwest region and high in the southeast region",and EP over the last 10 a increased significantly.The cumulative precipitation percentage of single day EEP was 34%and was dominant for 60 a,while the cumulative precipitation percentage of front,late,and balanced EEP types associated with PSP accounted for 66%,which confirms to the connotation of EEP.The cumulative frequencies of front and late EEP types were 23%and 21%,respectively,while the cumulative frequency of balanced EEP had the lowest value at only 13%.Moreover,global warming could lead to more single day EEP across the LP,and continuous EEP could increase in the northwestern region and decrease in the eastern region in the future.The concept of process-oriented EP could facilitate further exploration of disaster-causing processes associated with different types of EP,and provide a theoretical basis for deriving precipitation disaster chains and construction of disaster cluster characteristics. 展开更多
关键词 temporal and spatial variation climate change extreme precipitation(EP) event-based extreme precipitation(EEP) Loess Plateau
下载PDF
Decreasing magnitude of soil erosion along vegetation succession on sloping farmland in the Loess Plateau of China:5 years field monitoring evidence
4
作者 LIANG Yue JIAO Ju-ying +2 位作者 TANG Bing-zhe CAO Bin-ting LI Hang 《Journal of Mountain Science》 SCIE CSCD 2022年第8期2360-2373,共14页
The impacts of vegetation restoration on the soil erosion have been widely elucidated in the semi-arid regions.However,the magnitude of soil erosion on abandoned sloping farmland still remained unclear and their respo... The impacts of vegetation restoration on the soil erosion have been widely elucidated in the semi-arid regions.However,the magnitude of soil erosion on abandoned sloping farmland still remained unclear and their responses to vegetation succession were rarely addressed.The main objective of this study is to determine the magnitude of soil erosion along vegetation succession and explore the impact of vegetation succession on soil erosion from abandoned sloping farmland.Field observations were employed to monitor the rainfall,runoff,and soil erosion of seven sloping farmland plots with different abandoned ages and bare land from 2015 to 2019.The results indicated that the annual runoff depth and soil erosion modulus of vegetation types were in the range of 0.46 to 5.49 mm·a^(-1)and 1.3 to 24.5 t·km^(-2)·a^(-1),respectively.The vegetation effectively reduced the annual surface runoff and soil erosion with reduction of 73.8% to 97.8%and 98.0% to 99.9% as opposed to bare land.However,there were no significant differences in runoff and soil erosion for different vegetation types along succession.The largest event of vegetation types contributed to 38.7%-44.1% of the annual runoff and 42.5%-66.3% of the annual soil erosion,respectively.Vegetation restoration considerably alleviated the contribution of largest erosive event to annual soil erosion.The relationships between soil erosion,runoff and rainfall factors could be fitted well by linear functions,and the performances of regression models in predicting runoff were more satisfactory compared to predicting soil erosion.The Artemisia gmelinii(Agm)+Stipa bungeana(Sb)optimized the trade-off between sediment reduction and runoff maintenance,which should be selected as the suitable vegetation types to achieve the sustainability of socio-ecological systems. 展开更多
关键词 Vegetation restoration Abandoned ages Soil erosion Vegetation types Abandoned slope Loess Plateau
原文传递
Effects of plastic film mulching on soil greenhouse gases(CO2,CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau,China 被引量:25
5
作者 NAN Wei-ge YUE Shan-chao +2 位作者 HUANG Hai-zhou LI Shi-qing SHEN Yu-fang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第2期451-464,共14页
To better understand the effects of plastic film mulching on soil greenhouse gases(GHGs) emissions,we compared seasonal and vertical variations of GHG concentrations at seven soil depths in maize(Zea mays L.) fields a... To better understand the effects of plastic film mulching on soil greenhouse gases(GHGs) emissions,we compared seasonal and vertical variations of GHG concentrations at seven soil depths in maize(Zea mays L.) fields at Changwu station in Shaanxi,a semi-humid region,between 2012 and 2013.Gas samples were taken simultaneously every one week from non-mulched(BP) and plastic film-mulched(FM) field plots.The results showed that the concentration of GHGs varied distinctly at the soil-atmosphere interface and in the soil profile during the maize growing season(MS).Both carbon dioxide(CO_2) and nitrous oxide(N_2O) concentrations increased with increasement of soil depth,while the methane(CH_4)concentrations decreased with increasement of soil depth.A strong seasonal variation pattern was found for CO_2 and N_2O concentrations,as compared to an inconspicuous seasonal variation of CH_4 concentrations.The mean CO_2 and N_2O concentrations were higher,but the mean CH_4 concentration in the soil profiles was lower in the FM plots than in the BP plots.The results of this study suggested that plastic film mulching significantly increased the potential emissions of CO_2and N_2O from the soil,and promoted CH_4 absorption by the soil,particularly during the MS. 展开更多
关键词 温室气体浓度 土壤剖面 地膜覆盖 玉米田 黄土高原 土壤-大气界面 季节性变化 中国
下载PDF
Responses of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China 被引量:17
6
作者 Man CHENG Shao Shan AN 《Journal of Arid Land》 SCIE CSCD 2015年第2期216-223,共8页
Revegetation is a traditional practice widely used for soil protection. We evaluated the effect of natural revegetation succession on soil chemical properties and carbon fractions(particulate organic carbon(POC), humu... Revegetation is a traditional practice widely used for soil protection. We evaluated the effect of natural revegetation succession on soil chemical properties and carbon fractions(particulate organic carbon(POC), humus carbon(HS-C), humic acid carbon(HA-C) and fulvic acid carbon(FA-C)) on the Loess Plateau of China. The vegetation types, in order from the shortest to the longest enclosure duration, were:(a) abandoned overgrazed grassland(Ab G3; 3 years);(b) Hierochloe odorata Beauv.(Hi O7; 7 years);(c) Thymus mongolicus Ronnm(Th M15; 15 years);(d) Artemisia sacrorum Ledeb(At S25; 25 years);(e) Stipa bungeana Trin Ledeb(St B36; 36 years) and(f) Stipa grandis P. Smirn(St G56; 56 years). The results showed that the concentrations of soil organic carbon, total nitrogen and available phosphorus increased with the increase of restoration time except for Th M15. The concentration of NH4-N increased in the medium stage(for Th M15 and At S25) and decreased in the later stage(for St B36 and St G56) of vegetation restoration. However, NO3-N concentration significantly increased in the later stage(for St B36 and St G56). Carbon fractions had a similar increasing trend during natural vegetation restoration. The concentrations of POC, HS-C, FA-C and HA-C accounted for 24.5%–49.1%, 10.6%–15.2%, 5.8%–9.1% and 4.6%–6.1% of total carbon, respectively. For Ab G3, the relative changes of POC, HS-C and FA-C were significantly higher than that of total carbon during the process of revegetation restoration. The higher relative increases in POC, HS-C and FA-C confirmed that soil carbon induced by vegetation restoration was sequestrated by higher physical and chemical protection. The increases of soil C fractions could also result in higher ecological function in semiarid grassland ecosystems. 展开更多
关键词 土壤保护 黄土高原 植被演替 中国 总氮 有机物 颗粒有机碳 草原生态系统
下载PDF
Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China 被引量:14
7
作者 GUO Mingming WANG Wenlong +1 位作者 KANG Hongliang YANG Bo 《Journal of Arid Land》 SCIE CSCD 2018年第5期712-725,共14页
Soil erosion on the Loess Plateau of China is effectively controlled due to the implementation of several ecological restoration projects that improve soil properties and reduce soil erodibility. However, few studies ... Soil erosion on the Loess Plateau of China is effectively controlled due to the implementation of several ecological restoration projects that improve soil properties and reduce soil erodibility. However, few studies have examined the effects of vegetation restoration on soil properties and erodibility of gully head in the gully regions of the Loess Plateau. The objectives of this study were to quantify the effects of vegetation restoration on soil properties and erodibility in this region. Specifically, a control site in a slope cropland and 9 sites in 3 restored land-use types(5 sites in grassland, 3 in woodland and 1 in shrubland) in the Nanxiaohegou watershed of a typical gully region on the Loess Plateau were selected, and soil and root samples were collected to assess soil properties and root characteristics. Soil erodibility factor was calculated by the Erosion Productivity Impact Calculator method. Our results revealed that vegetation restoration increased soil sand content, soil saturated hydraulic conductivity, organic matter content and mean weight diameter of water-stable aggregate but decreased soil silt and clay contents and soil disintegration rate. A significant difference in soil erodibility was observed among different vegetation restoration patterns or land-use types. Compared with cropland, soil erodibility decreased in the restored lands by 3.99% to 21.43%. The restoration patterns of Cleistogenes caespitosa K. and Artemisia sacrorum L. in the grassland showed the lowest soil erodibility and can be considered as the optimal vegetation restoration pattern for improving soil anti-erodibility of the gully heads. Additionally, the negative linear change in soil erodibility for grassland with restoration time was faster than those of woodland and shrubland. Soil erodibility was significantly correlated with soil particle size distribution, soil disintegration rate, soil saturated hydraulic conductivity, water-stable aggregate stability, organic matter content and root characteristics(including root average diameter, root length density, root surface density and root biomass density), but it showed no association with soil bulk density and soil total porosity. These findings indicate that although vegetation destruction is a short-term process, returning the soil erodibility of cropland to the level of grassland, woodland and shrubland is a long-term process(8–50 years). 展开更多
关键词 植被恢复模式 土壤性质 黄土高原 性质变化 中国 土壤侵蚀 资源密度 分水岭
下载PDF
Fractal features of soil profiles under different land use patterns on the Loess Plateau, China 被引量:9
8
作者 Lie XIAO Sha XUE +1 位作者 GuoBin LIU Chao ZHANG 《Journal of Arid Land》 SCIE CSCD 2014年第5期550-560,共11页
Fractal theory is becoming an increasingly useful tool to describe soil structure dynamics for a better understanding of the performance of soil systems. Changes in land use patterns significantly affect soil physical... Fractal theory is becoming an increasingly useful tool to describe soil structure dynamics for a better understanding of the performance of soil systems. Changes in land use patterns significantly affect soil physical, chemical and biological properties. However, limited information is available on the fractal characteristics of deep soil layers under different land use patterns. In this study, the fractal dimensions of particle size distribution(PSD) and micro-aggregates in the 0–500 cm soil profile and soil anti-erodibility in the 0–10 cm soil profile for 10 typical land use patterns were investigated in the Zhifanggou Watershed on the Loess Plateau, China. The 10 typical land use patterns were: slope cropland, two terraced croplands, check-dam cropland, woodland, two shrublands, orchard, artificial and natural grasslands. The results showed that the fractal dimensions of PSD and micro-aggregates were all significantly influenced by soil depths, land use patterns and their interaction. The plantations of shrubland, woodland and natural grassland increased the amount of larger micro-aggregates, and decreased the fractal dimensions of micro-aggregates in the 0–40 cm soil profile. And they also improved the aggregate state and aggregate degree and decreased dispersion rate in the 0–10 cm soil profile. The results indicated that fractal theory can be used to characterize soil structure under different land use patterns and fractal dimensions of micro-aggregates were more effective in this regard. The natural grassland may be the best choice for improving soil structure in the study area. 展开更多
关键词 土地利用方式 土壤剖面 黄土高原 分形特征 中国 微团聚体 分形维数 分形理论
下载PDF
Weathering of Pisha-Sandstones in the Wind-Water Erosion Crisscross Region on the Loess Plateau 被引量:11
9
作者 NI Hanbin ZHANG Liping +2 位作者 ZHANG Dengrong WU Xiyuan FU Xingtao 《Journal of Mountain Science》 SCIE CSCD 2008年第4期340-349,共10页
Two types of pisha-sandstones of purple sandstones and gray sandstones,widely distributing in the wind-water erosion crisscross region of China,were selected and used in laboratory experiments for a better understandi... Two types of pisha-sandstones of purple sandstones and gray sandstones,widely distributing in the wind-water erosion crisscross region of China,were selected and used in laboratory experiments for a better understanding of the drying-wetting-freezing weathering process resulting from the apportionment of water or salt solution to rock samples.Weathering experiments were carried out under the conditions of environment control(including temperature,moisture and salt solution).All rock samples were frequently subjected to 140 drying-wetting-freezing cycles.The influences of weathering process were evaluated.It was found that the different treatments of moisture and salt solution applications could affect the nature of the weathering products resulting from drying-wetting-freezing.It was also observed that salt solution could effectively alleviate the weathering of pisha-sandstones.Although not all the observations could be explained,it was apparent that simulated environmental factors had both direct and indirect effects on the weathering of rocks. 展开更多
关键词 砂岩 风化作用 土壤侵蚀 中国
下载PDF
Fractions and Bioavailability of Soil Inorganic Phosphorus in the Loess Plateau of China under Different Vegetations 被引量:6
10
作者 WEI Xiaorong SHAO Mingan +2 位作者 SHAO Hongbo GAO Jianlun XU Gang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第1期263-270,共8页
植物在土壤磷营养起一个重要作用。然而,在中国的黄土高原的土壤的磷营养上的植物的效果很好没被理解。这研究被进行在中国的黄土高原揭示在植物和 phosphoru 的部分和可获得性之间的关系。22 个植物社区被调查,在不同植物华盖下面的... 植物在土壤磷营养起一个重要作用。然而,在中国的黄土高原的土壤的磷营养上的植物的效果很好没被理解。这研究被进行在中国的黄土高原揭示在植物和 phosphoru 的部分和可获得性之间的关系。22 个植物社区被调查,在不同植物华盖下面的土壤样品为土壤性质和无机的磷分别的决心是镇定的。结果证明 Leguminosae 和 Lilaceae 减少了 pH 并且当 Labiatae 和 Rosaceae 增加了 pH 并且减少时,在他们的华盖下面在土壤增加了有机物,阳离子交换能力,总数和 Olsen 磷在在他们的华盖下面的土壤的有机物,阳离子交换能力,总数和 Olsen 磷。Ca2P, Ca8P,高山和 Fe-P 的内容高度与土壤 Olsen 磷被联系。他们都在在 Leguminosae 和 Lilaceae 下面的土壤是更高级的并且在 Labiatae 和 Rosaceae 下面在土壤降低。这研究的结果显示 Leguminosae 和 Lilaceae 在土壤改进了磷营养,然而, Labiatae 和 Rosaceae 在他们的华盖下面在土壤阻碍了磷营养的改进,它将具有更多的帮助在这个区域指示植被恢复并且为土壤开发提供信息。 展开更多
关键词 BIOAVAILABILITY 部分 无机的磷 植被 土壤开发 黄土高原
下载PDF
Impact of vegetation succession on leaf-litter-soil C:N:P stoichiometry and their intrinsic relationship in the Ziwuling Area of China’s Loess Plateau 被引量:4
11
作者 Zongfei Wang Fenli Zheng 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期697-711,共15页
Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with su... Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with successional stages over a century in the severely eroded areas remain unclear.These were measured over a 100-year natural succession in five successional stages from annual grasses to climax forests.The results show that natural succession had significant effects on carbon(C),nitrogen(N)and phosphorous(P)concentrations in leaf-litter-soil and their ratios in severely eroded areas.Nitrogen concentrations and N:P ratios in leaf and litter increased from annual grasses to the shrub stage and then decreased in the late successional forest stages.Leaf P levels decreased from annual grasses to shrub stages and did not significantly change during late successional stages.Litter P concentration decreased in the early successional stages and increased during late successional stages,with no overall significant change.Soil C and N concentrations and C:N,C:P and N:P ratios increased with successional stages.Soil C and N concentrations decreased with the increasing soil depth.Both were significantly different between any successional stages and controls(cropland)in the upper 10 cm and 10–20 cm soil layers.Leaf N:P ratios may be used to indicate nutrient limitations and this study suggests that plant growth during the grass stages was limited by N,during the shrub stage,by P,and during the forest stages,by both of N and P.In addition,there were close correlations between litter and leaf C:N:P ratios,soil and litter C and N levels,and C:P and N:P ratios.These results show that long-term natural vegetation succession is effective in restoring degraded soil properties and improving soil fertility,and provide insights into C:N:P relationships of leaf,litter and soil influenced by vegetation succession stage. 展开更多
关键词 Ecological stoichiometry Leaf-litter-soil Loess Platea Natural succession Nutrient elements
下载PDF
Leaf C:N:P stoichiometric homeostasis of a Robinia pseudoacacia plantation on the Loess Plateau
12
作者 Zhuoxia Su Bingqian Su +1 位作者 Shenglin Mao Zhouping Shangguan 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期929-937,共9页
Homeostasis is the adaptability of a species to a changing environment.However,the ecological stoichiometric homeostasis of Robinia pseudoacacia L.in diff erent climatic regions is poorly understood but could provide ... Homeostasis is the adaptability of a species to a changing environment.However,the ecological stoichiometric homeostasis of Robinia pseudoacacia L.in diff erent climatic regions is poorly understood but could provide insights into its adaptability in the loess hilly region.This study sampled 20 year-old R.pseudoacacia plantations at 10 sites along a north–south transect on the Loess Plateau.Variations in the ecological stoichiometric characteristics of leaf and soil carbon,nitrogen,and phosphorus were analysed and homeostatic characteristics of leaf ecological stoichiometric parameters in diff erent climates were identifi ed.Factors aff ecting leaf stoichiometry were assessed.The results show that R.pseudoacacia leaves were rich in nitrogen and defi cient in phosphorous during tree growth and development.Nitrogen and phosphorous levels in the soils of the loess region were lower than the average in soils in the rest of China.All ecological stoichiometric parameters of R.pseudoacacia leaves in two diff erent climates were considered“strictly homeostasis”.Precipitation,available phosphorus,and soil C:P were the main factors aff ecting the variation of C:N:P stoichiometry of R.pseudoacacia leaves.R.pseudoacacia in the loess hilly region has strong ecologically homeostatic characteristics and suggests that it is well-adapted to the area. 展开更多
关键词 Loess Plateau Robinia pseudoacacia Ecological stoichiometry HOMEOSTASIS
下载PDF
Effects of nitrogen addition on the soil detachment in the typical grasslands of the Loess Plateau
13
作者 LI Pan-pan WANG Bing +1 位作者 YANG Yan-fen LIU Guo-bin 《Journal of Mountain Science》 SCIE CSCD 2022年第12期3503-3516,共14页
Nitrogen deposition will alleviate the nitrogen limitation in terrestrial ecosystems and greatly affect vegetation growth,thereby soil erosion.It is important to clarify the effects of nitrogen addition to the plant r... Nitrogen deposition will alleviate the nitrogen limitation in terrestrial ecosystems and greatly affect vegetation growth,thereby soil erosion.It is important to clarify the effects of nitrogen addition to the plant roots and soil properties on the soil erosion process.A nitrogen addition experiment was conducted in the grassland dominated by Bothriochloa ischaemum(Linn.)Keng(BI),which has received 0,2.5,5,and 10 g N m^(-2) yr^(-1)(N_(0),N_(2.5),N_(5)and N_(10),respectively)for three consecutive years.Then,a total of 150 undisturbed soil samples were collected(including bare soil control)and subjected to flowing water to test their soil detachment capacities under six shear stress levels(10.2 Pa to 29.9 Pa).Three-year nitrogen addition increased the soil bulk density,soil cohesion and nitrate nitrogen while decreasing the saturated hydraulic conductivity,soil water-stable aggregates,soil organic carbon,total nitrogen and ammonium nitrogen.The root mass density and root diameter decreased with nitrogen addition.And the root length,surface area and volume density of the N_(0) and N_(5) treatments were larger than those of the other treatments,while the plant roots were significantly inhibited by N_(10).Additionally,the soil detachment capacity(D_(c))and rill erodibility(K_(r))of the N_(0) and N_(5) treatments were significantly less than those of the N_(2.5) and N_(10)treatments,of which the Dc(0.020 kg m^(-2) s^(-1))of the N_(0) treatment was 69.0%,24.3%and 66.8%less than that of the N_(2.5),N_(5) and N_(10) treatments,respectively.The Kr of the N_(0) treatment was 0.0012 s m^(-1),which was 72.1%,25.0%and 70.0%less than that of the others.This study implies that an increase in nitrogen addition likely exacerbates soil erosion in the early(approximately 2.5 g N m^(-2) yr^(-1))and late phases(more than 10 g N m^(-2) yr^(-1)).However,when the nitrogen addition rate is approximately 5 g m^(-2) yr^(-1),soil erosion may be inhibited because of the responses of the plant roots and soil to nitrogen addition. 展开更多
关键词 Nitrogen deposition Root traits Soil properties Soil detachment GRASSLAND Loess Plateau
原文传递
Changes in diversity,composition and assembly processes of soil microbial communities during Robinia pseudoacacia L.restoration on the Loess Plateau,China
14
作者 WANG Kun WANG Xiaoxia +2 位作者 FEI Hongyan WAN Chuanyu HAN Fengpeng 《Journal of Arid Land》 SCIE CSCD 2022年第5期561-575,共15页
Robinia pseudoacacia L.(RP)restoration has increased vegetation cover in semi-arid regions on the Loess Plateau of China,but ecological problems have also occurred due to RP restoration,such as reduced soil moisture.F... Robinia pseudoacacia L.(RP)restoration has increased vegetation cover in semi-arid regions on the Loess Plateau of China,but ecological problems have also occurred due to RP restoration,such as reduced soil moisture.Further,it is still uncertain how microbial diversity,composition and assembly processes change with RP restoration in semi-arid regions.Therefore,amplicon sequencing of small subunit ribosomal ribonucleic acid(16S rRNA)and internal transcribed spacer(ITS)genes was performed to study soil bacterial and fungal diversity,composition and assembly processes at four study sites with different stand ages of RP plantations(Y10,RP plantation with stand ages less than 10 a;Y15,RP plantation with stand ages approximately 15 a;Y25,RP plantation with stand ages approximately 25 a;and Y40,RP plantation with stand ages approximately 40 a)along a 40-a chronosequence on the Loess Plateau.The diversity of soil bacteria and fungi increased significantly during the restoration period from 10 to 15 a(P<0.05).However,compared with Y15,bacterial diversity was lower at Y25 and Y40,and fungal diversity remained stable during the restoration period between 25 and 40 a.The relative abundances of Proteobacteria and Ascomycota increased during the restoration period from 10 to 15 a.Conversely,after 15 a of restoration,they both decreased,whereas the relative abundances of Actinomycetes,Acidobacteria and Basidiomycota gradually increased.The variations in soil bacterial communities were mainly related to changes in soil total nitrogen,nitrate nitrogen and moisture contents,while soil fungal communities were mainly shaped by soil organic carbon and nitrate nitrogen contents.Bacterial communities were structured by the heterogeneous selection and stochastic process,while fungal communities were structured primarily by the stochastic process.The RP restoration induced an increase in the relative importance of heterogeneous selection on bacterial communities.Overall,this study reveals the changes in microbial diversity,community composition and assembly processes with RP restoration on the Loess Plateau and provides a new perspective on the effects of vegetation restoration on soil microbial communities in semi-arid regions. 展开更多
关键词 Robinia pseudoacacia microbial diversity community structure community assembly RESTORATION semi-arid regions
下载PDF
Effects of vegetation near-soil-surface factors on runoff and sediment reduction in typical grasslands on the Loess Plateau,China
15
作者 LI Panpan WANG Bing +1 位作者 YANG Yanfen LIU Guobin 《Journal of Arid Land》 SCIE CSCD 2022年第3期325-340,共16页
Vegetation near-soil-surface factors can protect topsoil from erosion,however,their contributions to the reduction of soil erosion,especially under natural rainfall events,have not been systematically recognized.This ... Vegetation near-soil-surface factors can protect topsoil from erosion,however,their contributions to the reduction of soil erosion,especially under natural rainfall events,have not been systematically recognized.This study was performed to quantify the effects of near-soil-surface factors on runoff and sediment under natural rainfall events on grasslands dominated by Bothriochloa ischaemum(Linn.)Keng(BI grassland)and Artemisia gmelinii Thunb.(AG grassland)in two typical watersheds on the Loess Plateau,China in 2018.By successive removal of the plant canopy,litter,biological soil crusts(BSCs)and plant roots,we established five treatments including plant roots,plant roots+BSCs,plant roots+BSCs+litter,intact grassland and bare land in each grassland type.In total,twenty runoff plots(5 m×3 m)with similar slopes and aspects were constructed in the two types of grasslands.Results showed that plant canopy,litter and roots reduced runoff,while BSCs,which swelled in the presence of water,increased runoff.In contrast,all of these factors reduced sediment yield.In addition,the reductions in runoff and sediment yield increased with I30(maximum 30-min rainfall intensity)for each vegetation near-soil-surface factor except for BSCs.Among these factors,plant canopy had the largest contribution to runoff reduction,accounting for 48.8% and 39.9% in the BI and AG grasslands,respectively.The contributions of these vegetation near-soil-surface factors to sediment yield reduction were similar(21.3%-29.9%)in the two types of grasslands except for BSCs in the AG grassland(10.3%).The total reduction in runoff in the BI grassland(70.8%)was greater than that in the AG grassland(53.1%),while the reduction in sediment yield was almost the same in both grasslands(97.4%and 96.7%).In conclusion,according to the effects of different vegetation near-soil-surface factors on runoff and sediment production,our results may provide more complete insight and scientific basis into the effects of various vegetation related factors in controlling soil erosion. 展开更多
关键词 vegetation near-soil-surface factor grassland arid and semi-arid soil erosion Loess Plateau
下载PDF
Factors controlling deep-profile soil organic carbon and water storage following Robinia pseudoacacia afforestation of the Loess Plateau in China
16
作者 Xi Yang Tongchuan Li Ming'an Shao 《Forest Ecosystems》 SCIE CSCD 2022年第6期838-851,共14页
Background:Afforestation is a common and effective approach used for the restoration of degraded ecosystems worldwide.In China,Robinia pseudoacacia(RP)is among the main non-native tree species and has been widely plan... Background:Afforestation is a common and effective approach used for the restoration of degraded ecosystems worldwide.In China,Robinia pseudoacacia(RP)is among the main non-native tree species and has been widely planted in revegetation of the Loess Plateau.However,owing to uncertainties regarding soil water consumption and carbon sequestration,it is necessary to assess the suitability and sustainability of R.pseudoacacia in restoration.In this study,we aimed to analyse the dynamic effects of R.pseudoacacia forest on soil carbon storage(SCS)and soil water storage(SWS).Specifically,we investigated the association between soil water content(SWC)and soil organic carbon(SOC)and underlying factors in the 0-500-cm profile of a 10-to 50-year-old chronosequence.Results:The results obtained indicated that the dynamics of SWS and SCS on this time scale could be divided into an initial reduction phase(the initial 20 years after afforestation)and subsequent recovery(20-50 years after afforestation).Compared with in the abandoned land(AL),the net accumulation of SCS in R.pseudoacacia forest was 2.51 Mg·ha^(-1)at 50 years after afforestation,whereas there was a 398.76-mm deficit in SWS.Additionally,the natural succession of R.pseudoacacia forest has contributed to the continuous change in stand structure(e.g.vegetation cover(VC),understory vegetation coverage(UVC),and litter biomass(LB)).Conclusions:These findings indicate that vegetation restoration increases carbon sequestration while causing soil water deficit.Furthermore,stand density(SD)was established to make a predominant contribution to the dynamics of SWS and SCS via its effects in altering vegetation,soil,and litter characteristics.Therefore,high-density plantation forests in the Loess Plateau area should be appropriately thinned to reduce the density of forest stands on the basis of soil erosion control and wind and sand fixation,so as to increase carbon sink with lower water consumption,thus realizing the synergistic development of soil carbon sequestration and water connotation. 展开更多
关键词 AFFORESTATION Robinia pseudoacacia Soil organic carbon Soil water Coupling interaction
下载PDF
Land use effects on the dynamics of soil C,N and microbes in the water-wind erosion crisscross region of the northern Loess Plateau,China
17
作者 Yi WANG Chunyue LI Shunjin HU 《Pedosphere》 SCIE CAS CSCD 2024年第1期181-190,共10页
The water-wind erosion crisscross region of the northern Loess Plateau in China is under constant pressure from severe erosion due to its windy and dry climate and intensive human activities. Identifying sustainable l... The water-wind erosion crisscross region of the northern Loess Plateau in China is under constant pressure from severe erosion due to its windy and dry climate and intensive human activities. Identifying sustainable land use patterns is key to maintaining ecosystem sustainability in the area. Our aim was to appraise the impacts of different land use regimes on the dynamics of soil total organic C(TOC), total N(TN), and microbes in a typical watershed in the northern Loess Plateau to identify suitable land use types that can maintain soil fertility and sustainability. A field experiment was performed in Liudaogou watershed in Shenmu City, Shaanxi Province, China, where the dynamics of soil TOC and TN, microbial biomass C and N, microbial respiration, and net N mineralization in six typical land use types, dam land, rainfed slope land, deciduous broadleaf forest, evergreen coniferous forest, shrubland, and grassland,were measured in three different growing seasons. Land use type and season significantly affected TOC, TN, and the dynamics of microbial biomass and activity. As the most anthropogenically disturbed land use pattern, dam land was an optimal land use pattern for TOC sequestration due to its higher TOC and TN, but lower microbial activity. Soil TOC, TN, and microbial properties demonstrated a decreasing trend after natural grassland was converted to shrubland,forest, and rainfed slope land. Shrubland with exotic N-fixing Korshinsk peashrub(Caragana korshinskii Kom.) can maintain TOC, TN, and microbial properties similar to those in grassland. Soil TOC, NH_(4+)^(-)N, TN, moisture, and extractable C were the principal indexes for soil microbial biomass and activity and explained 88.90% of the total variance. Thus, grassland was the optimal land use pattern in the water-wind erosion crisscross region of the northern Loess Plateau to maintain ecosystem stability and sustainability. 展开更多
关键词 GRASSLAND microbial activity microbial biomass total organic C total N WATERSHED
原文传递
Effect of Different Vegetation Types on the Rhizosphere Soil Microbial Community Structure in the Loess Plateau of China 被引量:14
18
作者 ZHANG Chao LIU Guo-bin +1 位作者 XUE Sha XIAO Lie 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第11期2103-2113,共11页
The Loess Plateau in China is one of the most eroded areas in the world.Accordingly,vegetation restoration has been implemented in this area over the past two decades to remedy the soil degradation problem.Understandi... The Loess Plateau in China is one of the most eroded areas in the world.Accordingly,vegetation restoration has been implemented in this area over the past two decades to remedy the soil degradation problem.Understanding the microbial community structure is essential for the sustainability of ecosystems and for the reclamation of degraded arable land.This study aimed to determine the effect of different vegetation types on microbial processes and community structure in rhizosphere soils in the Loess Plateau.The six vegetation types were as follows:two natural grassland(Artemisia capillaries and Heteropappus altaicus),two artificial grassland(Astragalus adsurgens and Panicum virgatum),and two artificial shrubland(Caragana korshinskii and Hippophae rhamnoides)species.The microbial community structure and functional diversity were examined by analyzing the phospholipid fatty acids(PLFAs) and community-level physiological profiles.The results showed that rhizosphere soil sampled from the H.altaicus and A.capillaries plots had the highest values of microbial biomass C,average well color development of carbon resources,Gram-negative(G-)bacterial PLFA,bacterial PLFA,total PLFA,Shannon richness,and Shannon evenness,as well as the lowest metabolic quotient.Soil sampled from the H.rhamnoides plots had the highest metabolic quotient and Gram-positive(G+)bacterial PLFA,and soil sampled from the A.adsurgens and A.capillaries plots had the highest fungal PLFA and fungal:bacterial PLFA ratio.Correlation analysis indicated a significant positive relationship among the microbial biomass C,G-bacterial PLFA,bacterial PLFA,and total PLFA.In conclusion,plant species under arid climatic conditions significantly affected the microbial community structure in rhizosphere soil.Among the studied plants,natural grassland species generated the most favorable microbial conditions. 展开更多
关键词 微生物群落结构 根际土壤 植被类型 黄土高原 中国 磷脂脂肪酸 PLFA 微生物生物量碳
下载PDF
Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China 被引量:13
19
作者 LIU Bingxia SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2016年第1期47-59,共13页
Implementation of the Grain-for-Green project has led to rapid land cover changes and resulted in a significantly increased vegetation cover on the Loess Plateau of China during the past few decades. The main objectiv... Implementation of the Grain-for-Green project has led to rapid land cover changes and resulted in a significantly increased vegetation cover on the Loess Plateau of China during the past few decades. The main objective of this study was to examine the responses of soil water dynamics under four typical vegetation types against precipitation years. Soil water contents(SWCs) were measured in 0–4.0 m profiles on a hillslope under the four vegetation types of shrub, pasture, natural fallow and crop in a re-vegetated catchment area from April to October in normal(2010), dry(2011), wet(2014) and extremely wet(2013) years. The results indicated that precipitation and vegetation types jointly controlled the soil water temporal dynamics and profile characteristics in the study region. SWCs in 0–4.0 m profiles of the four vegetation types were ranked from high to low as crop>fallow>pasture>shrub and this pattern displayed a temporal stability over the four years. In the extremely wet year, SWC changes occurred in the 0–2.0 m layer under shrub and pasture while the changes further extended to the depth of 4.0-m deep layers under fallow and crop. In the other three years, SWCs changes mainly occurred in the 0–1.0 m layer and kept relatively stable in the layers deeper than 1.0 m for all the four vegetation types. The interannual variation in soil depth of SWCs was about 0–2.0 m for shrub and pasture, about 0–3.4 m for fallow and about 0–4.0 m for crop, respectively. The dried soil layers formed at the depths of 1.0, 0.6, 1.6 and 0.7 m under shrub, and 1.0, 1.0, 2.0 and 0.9 m under pasture, respectively in 2010, 2011, 2013 and 2014. The infiltrated rainwater mostly stayed in the 0–1.0 m layer and hardly supplied to soil depth >1.0 m in normal, dry and wet years. Even in the extremely wet year of 2013, rainwater recharge depth did not exceed 2.0 m under shrub and pasture. This implied that soil desiccation was difficult to remove in normal, dry and wet years, and soil desiccation could be removed in 1.0–2.0 m soil layers even in the extremely wet year under shrub and pasture. The results indicated that the natural fallow was the best vegetation type for achieving sustainable utilization of soil water and preventing soil desiccation. 展开更多
关键词 precipitation pattern RESTORATION SOIL water dynamics SOIL DESICCATION VEGETATION type
下载PDF
Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Profile of Loess Tableland in China 被引量:11
20
作者 CHENG Li-ping LIU Wen-zhao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第6期1382-1392,共11页
Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep... Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep loess profile, which is critical for maintaining the function of the "soil water pool" is rarely studied because deep profile soil samples are difficult to collect. In this study, four experimental plots were established in 2005 to represent different farming systems on the Changwu Tableland: fallow land, fertilized cropland, unfertilized cropland, and continuous alfalfa. The soil water content in the 15-m-deep loess profiles was monitored continuously from 2007 to 2012 with the neutron probe technique. The results showed that temporal variations in soil water profiles differed among the four farming systems. Under fallow land, the soil water content increased gradually over time, first in the surface layers and later in the deep soil layers. In contrast, the soil water content decreased gradually under continuous alfalfa. The distributions of soil water in deep soil layers under both fertilized and unfertilized cropland were relatively stable over time. Thus farming system significantly affected soil water content. Seven years after the start of the experiment, the soil water contents in the 15-m-deep profiles averaged 23.4% under fallow land, 20.3% under fertilized cropland, 21.6% under unfertilized cropland, and 16.0% under continuous alfalfa. Compared to measurements at the start of the experiment, both fallow land and unfertilized cropland increased soil water storage in the 15-m loess profiles. In contrast, continuous alfalfa reduced soil water storage. Fertilized cropland has no significant effect on soil water storage. These results suggest that deep soil water can be replenished under the fallow and unfertilized farming systems. Dry soil layers(i.e., those which have soil water content less than the stable field water capacity) in the subsoil of the Changwu Tableland region can be classified as either temporary dry soil layers or persistent dry soil layers. Temporary dry soil layers, which typically form under annual crops, often disappear during wet years. Persistent dry soil layers generally develop under perennial vegetation. Even after removing the vegetation, persistent dry soil layers remain for several decades. This study provides information useful for the conservation and utilization of soil water resources in the Loess Tableland. 展开更多
关键词 土壤含水量 土壤干层 耕作制度 黄土塬 中国 土壤水分含量 土地利用 覆盖 农田施肥
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部