The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is nece...The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis leads to less conservative lower bounds, indicating that PBCs should be employed as the preferred boundary conditions for the shakedown analysis of heterogeneous materials.展开更多
To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing...To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.展开更多
This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computatio...This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.展开更多
Offshore oil and gas development plays an important part in the global energy sector.Offshore platforms and flexible pipes are the key equipments in the whole offshore oil and gas development system.Because of the ran...Offshore oil and gas development plays an important part in the global energy sector.Offshore platforms and flexible pipes are the key equipments in the whole offshore oil and gas development system.Because of the randomness and uncertainty of wave and current loads in the ocean environment,the structural design and mechanical analysis of the marine equipment can be highly complicated.Therefore,this paper reviews the recent works of the theoretical model,numerical simulation,and experimental test in three research areas:hydrodynamic analysis of offshore platforms,structural mechanics analysis of flexible pipe and cable,and monitoring technology of offshore floating structures under marine loads.By analyzing their main research methods and key technical difficulties,this paper provides theoretical basis and technical support for the reliability engineering application of offshore platforms and flexible pipelines.Also,China is relatively backward in the design of marine floating platform,the design,analysis and testing of flexible pipeline and cable,as well as the marine equipment prototype monitoring technology research.Calling for breakthroughs at the earliest possible stage in the above fields,prime research should be focused on and strategic planning should be made to deal with“key areas and stranglehold problems”.It is of great significance for the development of China's deep-sea energy and resource development of independent technology and on time to achieve the“carbon peak”national strategic objectives.展开更多
In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting device...In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.展开更多
In the process of developing oil and gas resources in the Arctic,the impact of icebergs can pose a considerable threat to the structural safety of semi-submersible mooring platforms in ice regions.On the basis of the ...In the process of developing oil and gas resources in the Arctic,the impact of icebergs can pose a considerable threat to the structural safety of semi-submersible mooring platforms in ice regions.On the basis of the arbitrary Lagrangian Eulerian(ALE)algorithm,a numerical model for the interaction between an iceberg and a semi-submersible mooring platform is built in this work.First,a mooring system with a link element is designed and validated.An ice material model for the target iceberg is built and validated.A numerical model for the interaction between an iceberg and a semi-submersible mooring platform is then built.A parametric study(cable angle,tension angle and number of cables)is carried out to study the performance of the mooring system.The collision process between the semi-submersible mooring platform and the iceberg in the polar marine environment can be predicted by the present numerical model,and then the optimal mooring arrangement scheme can be obtained.The research results in this work can provide a reference for the design of mooring systems.展开更多
The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electrom...The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials.展开更多
Abstract Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose...Abstract Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.展开更多
In order to overcome the difficulties caused by singular optima, in the present paper, a new method for the solutions of structural topology optimization problems is proposed. The distinctive feature of this method is...In order to overcome the difficulties caused by singular optima, in the present paper, a new method for the solutions of structural topology optimization problems is proposed. The distinctive feature of this method is that instead of solving the original optimization problem directly, we turn to seeking the solutions of a sequence of approximated problems which are formulated by relaxing the constraints of the original problem to some extent. The approximated problem can be solved efficiently by employing the algorithms developed for sizing optimization problems because its solution is not singular. It can also be proved that when the relaxation parameter is tending to zero, the solution of the approximated problem will converge to the solution of the original problem uniformly. Numerical examples illustrate the effectiveness and validity of the present approach. Results are also compared with those obtained by traditional methods.展开更多
The spectral methods and ice-induced fatigue analysis are discussed based on Miner's linear cumulative fatigue hypothesis and S-N curve data. According to the long-term data of full-scale tests on the platforms in th...The spectral methods and ice-induced fatigue analysis are discussed based on Miner's linear cumulative fatigue hypothesis and S-N curve data. According to the long-term data of full-scale tests on the platforms in the Bohai Sea, the ice force spectrum of conical structures and the fatigue environmental model are established. Moreover, the finite element model of JZ20-2MSW platform, an example of ice-induced fatigue analysis, is built with ANSYS software. The mode analysis and dynamic analysis in frequency domain under all kinds of ice fatigue work conditions are carded on, and the fatigue life of the structure is estimated in detail. The methods in this paper can be helpful in ice-induced fatigue analysis of ice-resistant platforms.展开更多
Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in C...Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.展开更多
The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in...The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.展开更多
Environmental load is the primary factor in the design of offshore engineering structures and ocean current is the principal environmental load that causes underwater structural failure. In computational analysis, the...Environmental load is the primary factor in the design of offshore engineering structures and ocean current is the principal environmental load that causes underwater structural failure. In computational analysis, the calculation of current load is mainly based on the current profile. The current profile model, which is based on a structural failure criterion, is conducive to decreasing the uncertainty of the current load. In this study, we used prototype monitoring data and the empirical orthogonal function(EOF) method to investigate the current profile in the South China Sea and its correlation with the design of underwater structural strength and the dynamic design of fatigue. The underwater structural strength design takes into account the size of the structure and the service water depth. We propose profiles for the overall and local designs using the inverse first-order reliability method(IFORM). We extracted the characteristic profile current(CPC) of the monitored sea area to solve dynamic design problems such as vortex-induced vibration(VIV). We used random sampling to verify the feasibility of using the EOF method to calculate the CPC from the current data and identified the main problems associated with using the CPC, which deserve close attention in VIV design. Our research conclusions provide direct references for determining current load in this sea area. This analysis method can also be used in the analysis of other sea areas or field variables.展开更多
The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcom...The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.展开更多
An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameter...An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.展开更多
Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity fiel...Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination.展开更多
Recently, the structural fuse has become an important issue in the field of earthquake engineering. Due to the trilinearity of the pushover curve of buildings with metallic structural fuses, the mechanism of the struc...Recently, the structural fuse has become an important issue in the field of earthquake engineering. Due to the trilinearity of the pushover curve of buildings with metallic structural fuses, the mechanism of the structural fuse is investigated through the ductility equation of a single-degree-of-freedom system, and the corresponding damage-reduction spectrum is proposed to design and retrofit buildings. Furthermore, the controlling parameters, the stiffness ratio between the main frame and structural fuse and the ductility factor of the main frame, are parametrically studied, and it is shown that the structural fuse concept can be achieved by specific combinations of the controlling parameters based on the proposed damage-reduction spectrum. Finally, a design example and a retrofit example, variations of real engineering projects after the 2008 Wenchuan earthquake, are provided to demonstrate the effectiveness of the proposed design procedures using buckling restrained braces as the structural fuses.展开更多
It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gra...It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gradient system is exactly suitable to study the stability of a dynamical system with the aid of the Lyapunov function. The stability of the solution for a simple rheonomic nonholonomic constrained system is studied in this paper. Firstly, the differential equations of motion of the system are established. Secondly, a problem in which the generalized forces are exerted on the system such that the solution is stable is proposed. Finally, the stable solutions of the rheonomic nonholonomic system can be constructed by using the gradient systems.展开更多
Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous st...Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous studies,the calculation of the WSS modulated by exercise training was primarily based upon the rigid tube model,which did not take non-linear effects of vessel elastic deformation into consideration.In this study,with an elastic tube model,we estimated the effect of a bout of 30-minute acute cycling exercise on the WSS and the flow rate in the common carotid artery according to the measured inner diameter,center-line blood flow velocity,heart rates and the brachial blood pressures before and after exercise training.Furthermore,the roles of exerciseinduced arterial diameter and blood flow rate in the change of WSS were also determined.The numerical results demonstrate that acute exercise significantly increases the magnitudes of blood flow rate and WSS.Moreover,the vessel elastic deformation is a non-negligible factor in the calculation of the WSS induced by exercise,which generates greater effects on the minimum WSS than the maximum WSS.Additionally,the contributions of exercise-induced variations in blood flow rate and diameter are almost identical in the change of the mean WSS.展开更多
A beam approximation method for dynamic analysis of launch vehicles modelled as stiffened cylindrical shells is proposed.Firstly,an initial beam model of the stiffened cylindrical shell is established based on the cro...A beam approximation method for dynamic analysis of launch vehicles modelled as stiffened cylindrical shells is proposed.Firstly,an initial beam model of the stiffened cylindrical shell is established based on the cross-sectional area equivalence principle that represents the shell skin and its longitudinal ribs as a beam with annular cross-section,and the circumferential ribs as lumped masses at the nodes of the beam elements.Then,a fine finite element model(FE model)of the stiffened cylindrical shell is constructed and a modal analysis is carried out.Finally,the initial beam model is improved through model updating against the natural frequencies and mode shapes of the fine FE model of the shell.To facilitate the comparison between the mode shapes of the fine FE model of the stiffened shell and the equivalent beam model,a weighted nodal displacement coupling relationship is introduced.To prevent the design parameters used in model updating from converging to incorrect values,a pre-model updating procedure is added before the proper model updating.The results of two examples demonstrate that the beam approximation method presented in this paper can build equivalent beam models of stiffened cylindrical shells which can reflect the global longitudinal,lateral and torsional vibration characteristics very well in terms of the natural frequencies.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 52075070 and12302254)the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents (No. 2021RD16)the Liaoning Revitalization Talents Program (No. XLYC2002108)。
文摘The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis leads to less conservative lower bounds, indicating that PBCs should be employed as the preferred boundary conditions for the shakedown analysis of heterogeneous materials.
基金financially supported by the State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment,Dalian University of Technology(Grant No.GZ23112)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2021ME146).
文摘To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.
基金supported by the National Natural Science Foundation of China (11072049,10772038)the Key Project of Chinese National Programs for Fundamental Research and Development (2010CB832703)+1 种基金the National Key Technology Support Program (2009BAG12A04)the Program for New Century Excellent Talents in University
文摘This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.
基金financially supported by the National Key R&D Program of China(Grant No.2021YFA1003501)the National Natural Science Foundation of China(Grant No.U1906233)+2 种基金the Key R&D Program of Shandong Province(Grant No.2019JZZY010801)the Central Guidance on Local Science and Technology Development Fund of Shenzhen(Grant No.2021Szvup021)the Fundamental Research Funds for the Central Universities(Grant Nos.DUT22ZD209 and DUT21ZD209)。
文摘Offshore oil and gas development plays an important part in the global energy sector.Offshore platforms and flexible pipes are the key equipments in the whole offshore oil and gas development system.Because of the randomness and uncertainty of wave and current loads in the ocean environment,the structural design and mechanical analysis of the marine equipment can be highly complicated.Therefore,this paper reviews the recent works of the theoretical model,numerical simulation,and experimental test in three research areas:hydrodynamic analysis of offshore platforms,structural mechanics analysis of flexible pipe and cable,and monitoring technology of offshore floating structures under marine loads.By analyzing their main research methods and key technical difficulties,this paper provides theoretical basis and technical support for the reliability engineering application of offshore platforms and flexible pipelines.Also,China is relatively backward in the design of marine floating platform,the design,analysis and testing of flexible pipeline and cable,as well as the marine equipment prototype monitoring technology research.Calling for breakthroughs at the earliest possible stage in the above fields,prime research should be focused on and strategic planning should be made to deal with“key areas and stranglehold problems”.It is of great significance for the development of China's deep-sea energy and resource development of independent technology and on time to achieve the“carbon peak”national strategic objectives.
基金Project supported by the Science and Technology Plan Joint Program of Liaoning Province of China(Natural Science Foundation-Doctoral Research Launch Project)(No.2024-BSLH-027)the Fundamental Research Funds for Undergraduate Universities of Liaoning Province of China(No.LJBKY2024033)+1 种基金the National Natural Science Foundation of China(No.12472064)the Natural Science Foundation of Liaoning Province of China(No.2023-MS-118)。
文摘In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.
基金financially supported by the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center,Ludong University(Grant Nos.MAETIC202209 and MAETIC202201)Shandong Provincial Natural Science Foundation(Grant No.ZR2022QE092)+2 种基金China Postdoctoral Science Foundation(Grant No.2023M730829)Open Fund of the State Key Laboratory of Industrial Equipment Structural Analysis(Grant No.GZ23109)the National Natural Science Foundation of China(Grant Nos.52001284 and 52192694).
文摘In the process of developing oil and gas resources in the Arctic,the impact of icebergs can pose a considerable threat to the structural safety of semi-submersible mooring platforms in ice regions.On the basis of the arbitrary Lagrangian Eulerian(ALE)algorithm,a numerical model for the interaction between an iceberg and a semi-submersible mooring platform is built in this work.First,a mooring system with a link element is designed and validated.An ice material model for the target iceberg is built and validated.A numerical model for the interaction between an iceberg and a semi-submersible mooring platform is then built.A parametric study(cable angle,tension angle and number of cables)is carried out to study the performance of the mooring system.The collision process between the semi-submersible mooring platform and the iceberg in the polar marine environment can be predicted by the present numerical model,and then the optimal mooring arrangement scheme can be obtained.The research results in this work can provide a reference for the design of mooring systems.
基金support for this work by Key Research and Development Project of Henan Province(Grant.No.241111232300)the National Natural Science Foundation of China(Grant.No.52273085 and 52303113)the Open Fund of Yaoshan Laboratory(Grant.No.2024003).
文摘The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials.
基金supported by the National Natural Science Foundation of China (10472025, 10672036, and 10872043)
文摘Abstract Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.
基金The project supported by the National Natural Science Foundation of China under project No.19572023
文摘In order to overcome the difficulties caused by singular optima, in the present paper, a new method for the solutions of structural topology optimization problems is proposed. The distinctive feature of this method is that instead of solving the original optimization problem directly, we turn to seeking the solutions of a sequence of approximated problems which are formulated by relaxing the constraints of the original problem to some extent. The approximated problem can be solved efficiently by employing the algorithms developed for sizing optimization problems because its solution is not singular. It can also be proved that when the relaxation parameter is tending to zero, the solution of the approximated problem will converge to the solution of the original problem uniformly. Numerical examples illustrate the effectiveness and validity of the present approach. Results are also compared with those obtained by traditional methods.
基金The paper was supported by the National 863 High Technology Develpoment Plan Project(Grant No.2001AA602015)
文摘The spectral methods and ice-induced fatigue analysis are discussed based on Miner's linear cumulative fatigue hypothesis and S-N curve data. According to the long-term data of full-scale tests on the platforms in the Bohai Sea, the ice force spectrum of conical structures and the fatigue environmental model are established. Moreover, the finite element model of JZ20-2MSW platform, an example of ice-induced fatigue analysis, is built with ANSYS software. The mode analysis and dynamic analysis in frequency domain under all kinds of ice fatigue work conditions are carded on, and the fatigue life of the structure is estimated in detail. The methods in this paper can be helpful in ice-induced fatigue analysis of ice-resistant platforms.
基金supported by the National Natural Science Foundation of China(Grant No.11572072)the National Key Basic Research and Development Program of China(Grant Nos.2014CB046803 and 2016ZX05028-002-005)
文摘Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.
基金financially supported by the National Natural Science Foundation of China(Grant No.51221961)
文摘The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.
基金support for this work by the National Natural Science Foundation of China (No. 15572072)the National Key Basic Research and Development Program (No. 2016ZX05028-002-005)
文摘Environmental load is the primary factor in the design of offshore engineering structures and ocean current is the principal environmental load that causes underwater structural failure. In computational analysis, the calculation of current load is mainly based on the current profile. The current profile model, which is based on a structural failure criterion, is conducive to decreasing the uncertainty of the current load. In this study, we used prototype monitoring data and the empirical orthogonal function(EOF) method to investigate the current profile in the South China Sea and its correlation with the design of underwater structural strength and the dynamic design of fatigue. The underwater structural strength design takes into account the size of the structure and the service water depth. We propose profiles for the overall and local designs using the inverse first-order reliability method(IFORM). We extracted the characteristic profile current(CPC) of the monitored sea area to solve dynamic design problems such as vortex-induced vibration(VIV). We used random sampling to verify the feasibility of using the EOF method to calculate the CPC from the current data and identified the main problems associated with using the CPC, which deserve close attention in VIV design. Our research conclusions provide direct references for determining current load in this sea area. This analysis method can also be used in the analysis of other sea areas or field variables.
文摘The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.
基金Funded by the National Natural Science Foundation of China (Nos.90605002, 90816025 and 10721062)the National Basic Research Programof China (No. 2006CB601205)
文摘An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.
基金supported by the Fundamental Research Funds for the Dalian University of Technology(Grant No.DUT10LK43)the National Key Basic Research Program of China(Grant No.2013CB036101)
文摘Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination.
基金National Natural Science Foundation of China under Grant Nos.11372061 and 91315301
文摘Recently, the structural fuse has become an important issue in the field of earthquake engineering. Due to the trilinearity of the pushover curve of buildings with metallic structural fuses, the mechanism of the structural fuse is investigated through the ductility equation of a single-degree-of-freedom system, and the corresponding damage-reduction spectrum is proposed to design and retrofit buildings. Furthermore, the controlling parameters, the stiffness ratio between the main frame and structural fuse and the ductility factor of the main frame, are parametrically studied, and it is shown that the structural fuse concept can be achieved by specific combinations of the controlling parameters based on the proposed damage-reduction spectrum. Finally, a design example and a retrofit example, variations of real engineering projects after the 2008 Wenchuan earthquake, are provided to demonstrate the effectiveness of the proposed design procedures using buckling restrained braces as the structural fuses.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11272050,11202090,11472124,11572034,and 11572145)the Science and Technology Research Project of Liaoning Province,China(Grant No.L2013005)+1 种基金China Postdoctoral Science Foundation(Grant No.2014M560203)the Doctor Start-up Fund in Liaoning Province of China(Grant No.20141050)
文摘It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gradient system is exactly suitable to study the stability of a dynamical system with the aid of the Lyapunov function. The stability of the solution for a simple rheonomic nonholonomic constrained system is studied in this paper. Firstly, the differential equations of motion of the system are established. Secondly, a problem in which the generalized forces are exerted on the system such that the solution is stable is proposed. Finally, the stable solutions of the rheonomic nonholonomic system can be constructed by using the gradient systems.
基金The research described in this paper was supported in part by the National Natural Science Foundation of China(Grant No.31370948,11672065).
文摘Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous studies,the calculation of the WSS modulated by exercise training was primarily based upon the rigid tube model,which did not take non-linear effects of vessel elastic deformation into consideration.In this study,with an elastic tube model,we estimated the effect of a bout of 30-minute acute cycling exercise on the WSS and the flow rate in the common carotid artery according to the measured inner diameter,center-line blood flow velocity,heart rates and the brachial blood pressures before and after exercise training.Furthermore,the roles of exerciseinduced arterial diameter and blood flow rate in the change of WSS were also determined.The numerical results demonstrate that acute exercise significantly increases the magnitudes of blood flow rate and WSS.Moreover,the vessel elastic deformation is a non-negligible factor in the calculation of the WSS induced by exercise,which generates greater effects on the minimum WSS than the maximum WSS.Additionally,the contributions of exercise-induced variations in blood flow rate and diameter are almost identical in the change of the mean WSS.
基金the National Natural Science Foundation of China(11672060,11672052).
文摘A beam approximation method for dynamic analysis of launch vehicles modelled as stiffened cylindrical shells is proposed.Firstly,an initial beam model of the stiffened cylindrical shell is established based on the cross-sectional area equivalence principle that represents the shell skin and its longitudinal ribs as a beam with annular cross-section,and the circumferential ribs as lumped masses at the nodes of the beam elements.Then,a fine finite element model(FE model)of the stiffened cylindrical shell is constructed and a modal analysis is carried out.Finally,the initial beam model is improved through model updating against the natural frequencies and mode shapes of the fine FE model of the shell.To facilitate the comparison between the mode shapes of the fine FE model of the stiffened shell and the equivalent beam model,a weighted nodal displacement coupling relationship is introduced.To prevent the design parameters used in model updating from converging to incorrect values,a pre-model updating procedure is added before the proper model updating.The results of two examples demonstrate that the beam approximation method presented in this paper can build equivalent beam models of stiffened cylindrical shells which can reflect the global longitudinal,lateral and torsional vibration characteristics very well in terms of the natural frequencies.