Owing to the ongoing pandemic,the importance of and demand for antimicrobial textiles have reached new heights.In addition to being used for medical purposes,antimicrobial textiles could be a self-defense entity again...Owing to the ongoing pandemic,the importance of and demand for antimicrobial textiles have reached new heights.In addition to being used for medical purposes,antimicrobial textiles could be a self-defense entity against microbes for the general population.Because textiles are widely used,they can effectively be used to prevent the spread of microbes worldwide.The conventional antibacterial finishing process of textiles is the wet treatment method using either the pad–dry–cure or exhaustion techniques.However,the textile wet treatment industries are major contributors to worldwide pollution,which is extremely concerning.Given the current and near-future high demand,it is imperative to include plasma in antimi-crobial finishing to achieve high efficiency in production,while retaining a safe environment.Hence,this paper reviews the rationale of plasma use in textile antimicrobial finishing through a critical analysis of recent studies and emphasizes the types and mechanisms of plasma techniques available for application.展开更多
Nowadays, highly alkaline chemicals like caustic soda, soda ash, silicate, acetic acid and soaping agents are used for scouring to remove the non-cellulosic impurities from the cotton. Using 30 - 40 gm/Kg on weight of...Nowadays, highly alkaline chemicals like caustic soda, soda ash, silicate, acetic acid and soaping agents are used for scouring to remove the non-cellulosic impurities from the cotton. Using 30 - 40 gm/Kg on weight of the fabric results in destruction of cotton structure. Intensive rinsing and more acid is needed for reutilization of cotton, which enlarges the volume of effluent. Furthermore, these hazards chemicals result in increase in COD, BOD and TDS in waste water. These chemicals also attack the cellulose leading to heavy strength loss and weight loss in the fabric. The net result is low quality control and polluted environment with high usage of energy, time, chemical and water. Aloe vera presents the finest commercial opportunity in various industrial sectors among the various plants. Also, most of the countries are gifted with the unique geographical features that are essential for cultivation of Aloe vera. Yet, none of the country has realized and reaped the full potential of such plants in various industrial applications. The reason is simple: lack of the requisite expertise in extraction of various enzymes present in aloe plant. Fortunately, the technology is now accessible to make use of enzyme in textile application. In this research an attempt has been made to make use of lipase enzyme extracted from aloe plant in textile chemical pre- treatment process. In the present research work, an attempt was made to develop bio scouring of 100% cotton knitted fabric with lipase enzyme extracted from Aloe deberena plant at various concentration (1%, 2% and 3%) at various temperature (40?C, 60?C and 70?C) for a period of 30 minutes, 60 minutes and 90 minutes. The properties of bio scoured fabrics are compared with these of conventional scoured one. Encouraging results in terms of dye uptake, dye levelness, wash fastness, light fastness and rubbing fastness are obtained in case of bio scouring fabric dyed with dark reactive colors. Further, it reduces volume of effluent as well as COD, TDS and pH. It saves a substantial thermal energy 50% and electrical energy 40%. Bio scouring waste water has 40% - 50% less COD and 60% less TDS as compared to conventional scouring waste water.展开更多
The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environment...The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environmental concerns,the textile ennoblement sector is the most critical of the textile production chain,especially the traditional dyeing processes.As an alternative to current problems,dyeing with supercritical CO_(2)(scCO_(2))has been presented as a clean and efficient process for a sustainable textile future.Supercritical fluid dyeing(SFD)has shown a growing interest due to its significant impact on environmental preservation and social,economic,and financial gains.The main SFD benefits include economy and reuse of non-adsorbed dyes;reduction of process time and energy expenditure;capture of atmospheric CO_(2)(greenhouse gas);use and recycling of CO_(2)in SFD;generation of carbon credits;water-free process;effluent-free process;reduction of CO_(2)emission and auxiliary chemicals.Despite being still a non-scalable and evolving technology,SFD is the future of dyeing.This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD.The SFD technique was introduced,along with its latest advances and future perspectives.Financial and environmental gains were also discussed.展开更多
While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using po...While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96).展开更多
In previous research much effort has been devoted to the geometry of woven fabrics and relat-ed problems under the assumption of constant yarn configuration in fabric.This paper will first re-port that image crimp (ya...In previous research much effort has been devoted to the geometry of woven fabrics and relat-ed problems under the assumption of constant yarn configuration in fabric.This paper will first re-port that image crimp (yarn crimp measured by an image analysis method) seems larger than actualvalue.From the explanation of this result,the variation of yarn configuration in woven fabric dueto the non-uniform flattening is revealed.The significance of this actual structure of woven fabricsis discussed.It is believed that the variation of yarn configuration is very important for fabric per-formance,and may be an advantage for fabric quality.展开更多
The present paper deals with gelatin nanofibres functionalized with silver nanoparticles, prepared by electrospinning using solutions of gelatin mixed with silver nitrate (AgNO3). As a common solvent for gelatin and s...The present paper deals with gelatin nanofibres functionalized with silver nanoparticles, prepared by electrospinning using solutions of gelatin mixed with silver nitrate (AgNO3). As a common solvent for gelatin and silver nitrate (AgNO3), a mixture of acetic acid and water (70:30 v/v) was selected. In this system, acetic acid was used as a solvent for gelatin, and at the same time reducing agent for silver ions in solution. Silver nanoparticles (nAg) were stabilized through a mechanism that involves an interaction of the oxygen atoms of the carbonyl groups of gelatin. The viscosity and the conductivity of the gelatinous solutions were found to increase with the solution concentration. There is an observed decrease in the viscosity of the nAg containing gelatin solutions with the aging time increasing, whereas the conductiity of the AgNO3—containing gelatin solutions was greater than that of the base gelatin solution. The gelatin nanofibres functionalized with silver nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and antimicrobial test. The results of investigations by TEM and XRD confirmed the presence of silver nanoparticles with diameters in the range of (2 - 10 nm), uniformly distributed over the surface of smooth nanofibres with an average diameter of 70 nm. The release of silver ions from both the 2- and 4-hrs crosslinked nAg containing gelatin fiber mats by a total immersion method in buffer and distilled water occurred rapidly during the first 60 minutes, and increased gradually afterwards. Lastly, the tests demonstrated that gelatin/Ag nanofibers have a good antimicrobial activity against some common bacteria found on burned wounds. The anti-bacterial activity of these materials was greatest against Staphylococcus aureus, followed by Escherichia coli, and Pseudomonas aeroginosa ≈ Candida albicans.展开更多
A new method is presented to solve the problem of loss of rabbit hair by using ES fiber blending with rabbit hair. ES fiber is used to bond the rabbit hair to prevent the rabbit hair from losing after heat setting. Th...A new method is presented to solve the problem of loss of rabbit hair by using ES fiber blending with rabbit hair. ES fiber is used to bond the rabbit hair to prevent the rabbit hair from losing after heat setting. The factors affecting hair loss are heat setting temperature, rabbit hair/ES fiber blend ratio, fabric heating setting, twistsof yarn, etc. Temperature of heat setting and ES fiber content are the two key factors This method has almost no detrimental effect on the coziness of the fabric, which is better than other hair loss prevention methods.展开更多
A new method based on image analysis for electrospun nanofibre diameter measurement is presented. First, the SEM micrograph of the nanofibre web obtained by electrospinning process is converted to binary image using l...A new method based on image analysis for electrospun nanofibre diameter measurement is presented. First, the SEM micrograph of the nanofibre web obtained by electrospinning process is converted to binary image using local thresholding method. In the next step, skeleton and distance transformed image are generated. Then, the intersection points which bring about untrue measurements are identified and removed from the skeleton. Finally, the resulting skeleton and distance transformed image are used to determine fibre diameter. The method is evaluated by a simulated image with known characteristics generated by ?-randomness procedure. The results indicate that this approach is successful in making fast, accurate automated measurements of electrospun fibre diameters.展开更多
Silicone coatings have been used in this study. The method adopted was the liquid drop analysis on the coated fabrics. The contact angle between a liquid drop and the fabric surface was measured with two liquids conti...Silicone coatings have been used in this study. The method adopted was the liquid drop analysis on the coated fabrics. The contact angle between a liquid drop and the fabric surface was measured with two liquids continuously and recorded by a computer. The surface energy was calculated by means of Owens method.Kinetic measurement was adopted. The contact angle of liquids on the fabric coated silicone decreased with time was found. A compound solution DX has been found, so that the contact angle of the liquids on the fabric washed with DX becomes constant, and the surface energy of the fabric can be reduced to below 15 mJ/m2.展开更多
Main factors influencing anti-ultraviolet performance of woven fabrics are investigated. By means of detailed arrangement of sample design, sample making, testing and analyzing, it shows that fiber materials, fabric c...Main factors influencing anti-ultraviolet performance of woven fabrics are investigated. By means of detailed arrangement of sample design, sample making, testing and analyzing, it shows that fiber materials, fabric compactness, fabric weave and yarn type are the four important factors influencing anti-UV performance of woven fabric, but with different effects. Among them fiber material is the most important factor. For the common fiber materials used, it shows that the anti-UV performance of polyester is comparatively better than others. Once fiber material is determined, fabric with medium float weave and high compactness can offer a good anti-UV performance. The anti-UV performance of fabric with "anti-UV" filament yarn is better than that with "anti-UV" staple yarn. The anti-UV property of fabrics with untwisted filament yams is better than that with twist counterparts.展开更多
This paper employs computer colour generation,and match prediction systems and aims tofind the most critical change of dye concentration corresponding to changes of Hue,or Chroma,orLightness of 1 unit just visible col...This paper employs computer colour generation,and match prediction systems and aims tofind the most critical change of dye concentration corresponding to changes of Hue,or Chroma,orLightness of 1 unit just visible colour difference,thus investigating the required accuracy level fordyeing dispensing.This leads to the selection of one critical colour-difference dimension of threefrom CMC (1:c) measurement.The results reveal that the concentration change in dye dispensing ismost critical for change of Hue in a computer controlled system.The formula describing the rela-tionship Of △E and △H in CMC (2:1) measurement is selected for further investigation.展开更多
In this research it is aimed to predict fabrics’air permeability properties by ANNs(artificial neural networks)before production with using inputs like some fabric parameters and finishing treatments.For this aim 27 ...In this research it is aimed to predict fabrics’air permeability properties by ANNs(artificial neural networks)before production with using inputs like some fabric parameters and finishing treatments.For this aim 27 various fabrics were weaved.After dyeing finishing treatments for antipilling were applied to fabrics in 3 concentrations.ANN models were established to predict fabrics’air permeability values with the selected 6 inputs such as weft yarn number,weft density,weaving pattern,fabric weight,fabric thickness and finishing treatment concentrations.The best results whose regression degree is R=0.99366,were obtained with two hidden layer networks with 5 neurons.展开更多
The influence of mercerization on cotton varieties from Africa,Xinjiang and Australia was studied. The micro-morphology,mechanical property and crystalline structure were analyzed before and after mercerization. Merce...The influence of mercerization on cotton varieties from Africa,Xinjiang and Australia was studied. The micro-morphology,mechanical property and crystalline structure were analyzed before and after mercerization. Mercerization made the surface of fibers smoother which resulted in improved luster of fiberes with better results observed in Australia,Xinjiang and Africa cotton varieties respectively. Although fiber strenth increased due to orientation of intra fiber cellulose chains,there was a general in the crystallinity index amongst the three varieties of cotton after mercerization.Reduced crystallinity is a function of improved processability and thus Australian cotton is more processable than cotton from Africa and Xinjiang.展开更多
In this study fabric stiffness/softness is examined which is an important element of applications on finishing processes of fabric.It is also studied the prediction of the fabric stiffness/softness with help of differ...In this study fabric stiffness/softness is examined which is an important element of applications on finishing processes of fabric.It is also studied the prediction of the fabric stiffness/softness with help of different parameters.Specific to this aim three different weft densitoes(30 tel/cm),3 different yarn numbers(20/1,24/1,30/1 Nm)and 3 different weaving patterns were used and 27 different fabrics were weaved.During the weaving process warp yarn is 100%polyester and weft yarn is 67-33%cotton/polyester.Three different finishing processes are applied to the 27 different fabrics(softness finishing treatment,crosslinking finishing and antipilling finishing)in 3 different concentrations and at the end there are 243 sample fabrics gathered.Stiffness test was applied to the samples according to the ASTM(American Society for Testing and Materials)D 4032-94 the Circular Bending Method.Test results were evaluated statistically.It was seen that the established model was related with p<0.0001 also,Artificial Neural Network(ANN)model was formed in order to predict the fabric softness using the test results.MATLAB packet model was used in forming the model.ANN was formed with 5 inputs(fabric plait,weft yarn no,weft density,weft type,finishing concentration)and 1 output(stiffness).ANN model was established using feed forward-back propagation network.There were many trials in forming the ANN and the best results were gathered at the values established with 0.97317 regression value,2 hidden layers and 10 neurons.展开更多
The purpose of this study is to develop low cost adsorbing materials to remove the heavy metals from waste waters. The outer covering of coconut, coconut shell, is the most abundant in the countries of its plantation ...The purpose of this study is to develop low cost adsorbing materials to remove the heavy metals from waste waters. The outer covering of coconut, coconut shell, is the most abundant in the countries of its plantation and enormous use. Utilization of agricultural waste (coconut shell) in the production of activated carbon potentially leads to produce a highly effective adsorbent generated from low cost raw materials that are available in huge quantity as renewable resources. At present coconut shell is not in use as valuable entity due to which disposal and ultimate environmental problems are faced. In this study coconut shells were impregnated with phosphoric acid and chemically activated at 450 C. The potential to remove chromium (VI) from aqueous solution by using activated coconut shells was investigated by batch experiment. The various sorption parameters i.e pH, sorbent dose, sorbate concentration, agitation time and agitation speed were optimized. The sorption of Cr (VI) onto activated carbon, developed from coconut shell, at pH 2 was achieved 81.25%. The best optimum conditions were obtained when 0.75 gm of sorbent was agitated at 150 rpm with 60 mg/L of sorbate for 40 min. Activated coconut shells has potential to be a good resource material for effective removal of chromium (VI) of low concentration from wastewater.展开更多
This study involved the use of uncarbonised and carbonised coir in preparing composites of a given polymer. In this case natural rubber (NR) was used. Uncarbonised coir (UC) and carbonised coir (CC) were separately us...This study involved the use of uncarbonised and carbonised coir in preparing composites of a given polymer. In this case natural rubber (NR) was used. Uncarbonised coir (UC) and carbonised coir (CC) were separately used to prepare the polymer composites. Carbon black (CB) was also used differently and the filler loadings for all varied between 0 and 50 phr. Before using the uncarbonised coir and carbonised coir, they were characterised on the basis of moisture content, pH, particles size and surface area. The properties of the various composite samples prepared were then investigated. The results of the tests obtained for the NR-UC composites were compared with those of NR-CC and also with those of NR-CB composites. It was observed that for hardness, the results obtained from composites of UC and CC fillers showed similar trends with those of carbon black (CB) reinforced composites, increasing with increase in filler volume. For the tensile strength and modulus a trend of slight rise was observed. There were no sharp rises in values as filler volumes were increased. UC and CC fillers were observed to impart very poorly on the tensile strength and modulus relative to the CB reinforced composites. The results from test for elongation, compression set and flex fatigue showed a falling trend for all the fillers to a comparable level with CB. It was generally observed that the uncarbonised coir presented better potentials for reinforcement than the carbonised coir.展开更多
文摘Owing to the ongoing pandemic,the importance of and demand for antimicrobial textiles have reached new heights.In addition to being used for medical purposes,antimicrobial textiles could be a self-defense entity against microbes for the general population.Because textiles are widely used,they can effectively be used to prevent the spread of microbes worldwide.The conventional antibacterial finishing process of textiles is the wet treatment method using either the pad–dry–cure or exhaustion techniques.However,the textile wet treatment industries are major contributors to worldwide pollution,which is extremely concerning.Given the current and near-future high demand,it is imperative to include plasma in antimi-crobial finishing to achieve high efficiency in production,while retaining a safe environment.Hence,this paper reviews the rationale of plasma use in textile antimicrobial finishing through a critical analysis of recent studies and emphasizes the types and mechanisms of plasma techniques available for application.
文摘Nowadays, highly alkaline chemicals like caustic soda, soda ash, silicate, acetic acid and soaping agents are used for scouring to remove the non-cellulosic impurities from the cotton. Using 30 - 40 gm/Kg on weight of the fabric results in destruction of cotton structure. Intensive rinsing and more acid is needed for reutilization of cotton, which enlarges the volume of effluent. Furthermore, these hazards chemicals result in increase in COD, BOD and TDS in waste water. These chemicals also attack the cellulose leading to heavy strength loss and weight loss in the fabric. The net result is low quality control and polluted environment with high usage of energy, time, chemical and water. Aloe vera presents the finest commercial opportunity in various industrial sectors among the various plants. Also, most of the countries are gifted with the unique geographical features that are essential for cultivation of Aloe vera. Yet, none of the country has realized and reaped the full potential of such plants in various industrial applications. The reason is simple: lack of the requisite expertise in extraction of various enzymes present in aloe plant. Fortunately, the technology is now accessible to make use of enzyme in textile application. In this research an attempt has been made to make use of lipase enzyme extracted from aloe plant in textile chemical pre- treatment process. In the present research work, an attempt was made to develop bio scouring of 100% cotton knitted fabric with lipase enzyme extracted from Aloe deberena plant at various concentration (1%, 2% and 3%) at various temperature (40?C, 60?C and 70?C) for a period of 30 minutes, 60 minutes and 90 minutes. The properties of bio scoured fabrics are compared with these of conventional scoured one. Encouraging results in terms of dye uptake, dye levelness, wash fastness, light fastness and rubbing fastness are obtained in case of bio scouring fabric dyed with dark reactive colors. Further, it reduces volume of effluent as well as COD, TDS and pH. It saves a substantial thermal energy 50% and electrical energy 40%. Bio scouring waste water has 40% - 50% less COD and 60% less TDS as compared to conventional scouring waste water.
文摘The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environmental concerns,the textile ennoblement sector is the most critical of the textile production chain,especially the traditional dyeing processes.As an alternative to current problems,dyeing with supercritical CO_(2)(scCO_(2))has been presented as a clean and efficient process for a sustainable textile future.Supercritical fluid dyeing(SFD)has shown a growing interest due to its significant impact on environmental preservation and social,economic,and financial gains.The main SFD benefits include economy and reuse of non-adsorbed dyes;reduction of process time and energy expenditure;capture of atmospheric CO_(2)(greenhouse gas);use and recycling of CO_(2)in SFD;generation of carbon credits;water-free process;effluent-free process;reduction of CO_(2)emission and auxiliary chemicals.Despite being still a non-scalable and evolving technology,SFD is the future of dyeing.This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD.The SFD technique was introduced,along with its latest advances and future perspectives.Financial and environmental gains were also discussed.
文摘While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96).
文摘In previous research much effort has been devoted to the geometry of woven fabrics and relat-ed problems under the assumption of constant yarn configuration in fabric.This paper will first re-port that image crimp (yarn crimp measured by an image analysis method) seems larger than actualvalue.From the explanation of this result,the variation of yarn configuration in woven fabric dueto the non-uniform flattening is revealed.The significance of this actual structure of woven fabricsis discussed.It is believed that the variation of yarn configuration is very important for fabric per-formance,and may be an advantage for fabric quality.
文摘The present paper deals with gelatin nanofibres functionalized with silver nanoparticles, prepared by electrospinning using solutions of gelatin mixed with silver nitrate (AgNO3). As a common solvent for gelatin and silver nitrate (AgNO3), a mixture of acetic acid and water (70:30 v/v) was selected. In this system, acetic acid was used as a solvent for gelatin, and at the same time reducing agent for silver ions in solution. Silver nanoparticles (nAg) were stabilized through a mechanism that involves an interaction of the oxygen atoms of the carbonyl groups of gelatin. The viscosity and the conductivity of the gelatinous solutions were found to increase with the solution concentration. There is an observed decrease in the viscosity of the nAg containing gelatin solutions with the aging time increasing, whereas the conductiity of the AgNO3—containing gelatin solutions was greater than that of the base gelatin solution. The gelatin nanofibres functionalized with silver nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and antimicrobial test. The results of investigations by TEM and XRD confirmed the presence of silver nanoparticles with diameters in the range of (2 - 10 nm), uniformly distributed over the surface of smooth nanofibres with an average diameter of 70 nm. The release of silver ions from both the 2- and 4-hrs crosslinked nAg containing gelatin fiber mats by a total immersion method in buffer and distilled water occurred rapidly during the first 60 minutes, and increased gradually afterwards. Lastly, the tests demonstrated that gelatin/Ag nanofibers have a good antimicrobial activity against some common bacteria found on burned wounds. The anti-bacterial activity of these materials was greatest against Staphylococcus aureus, followed by Escherichia coli, and Pseudomonas aeroginosa ≈ Candida albicans.
文摘A new method is presented to solve the problem of loss of rabbit hair by using ES fiber blending with rabbit hair. ES fiber is used to bond the rabbit hair to prevent the rabbit hair from losing after heat setting. The factors affecting hair loss are heat setting temperature, rabbit hair/ES fiber blend ratio, fabric heating setting, twistsof yarn, etc. Temperature of heat setting and ES fiber content are the two key factors This method has almost no detrimental effect on the coziness of the fabric, which is better than other hair loss prevention methods.
文摘A new method based on image analysis for electrospun nanofibre diameter measurement is presented. First, the SEM micrograph of the nanofibre web obtained by electrospinning process is converted to binary image using local thresholding method. In the next step, skeleton and distance transformed image are generated. Then, the intersection points which bring about untrue measurements are identified and removed from the skeleton. Finally, the resulting skeleton and distance transformed image are used to determine fibre diameter. The method is evaluated by a simulated image with known characteristics generated by ?-randomness procedure. The results indicate that this approach is successful in making fast, accurate automated measurements of electrospun fibre diameters.
文摘Silicone coatings have been used in this study. The method adopted was the liquid drop analysis on the coated fabrics. The contact angle between a liquid drop and the fabric surface was measured with two liquids continuously and recorded by a computer. The surface energy was calculated by means of Owens method.Kinetic measurement was adopted. The contact angle of liquids on the fabric coated silicone decreased with time was found. A compound solution DX has been found, so that the contact angle of the liquids on the fabric washed with DX becomes constant, and the surface energy of the fabric can be reduced to below 15 mJ/m2.
文摘Main factors influencing anti-ultraviolet performance of woven fabrics are investigated. By means of detailed arrangement of sample design, sample making, testing and analyzing, it shows that fiber materials, fabric compactness, fabric weave and yarn type are the four important factors influencing anti-UV performance of woven fabric, but with different effects. Among them fiber material is the most important factor. For the common fiber materials used, it shows that the anti-UV performance of polyester is comparatively better than others. Once fiber material is determined, fabric with medium float weave and high compactness can offer a good anti-UV performance. The anti-UV performance of fabric with "anti-UV" filament yarn is better than that with "anti-UV" staple yarn. The anti-UV property of fabrics with untwisted filament yams is better than that with twist counterparts.
文摘This paper employs computer colour generation,and match prediction systems and aims tofind the most critical change of dye concentration corresponding to changes of Hue,or Chroma,orLightness of 1 unit just visible colour difference,thus investigating the required accuracy level fordyeing dispensing.This leads to the selection of one critical colour-difference dimension of threefrom CMC (1:c) measurement.The results reveal that the concentration change in dye dispensing ismost critical for change of Hue in a computer controlled system.The formula describing the rela-tionship Of △E and △H in CMC (2:1) measurement is selected for further investigation.
文摘In this research it is aimed to predict fabrics’air permeability properties by ANNs(artificial neural networks)before production with using inputs like some fabric parameters and finishing treatments.For this aim 27 various fabrics were weaved.After dyeing finishing treatments for antipilling were applied to fabrics in 3 concentrations.ANN models were established to predict fabrics’air permeability values with the selected 6 inputs such as weft yarn number,weft density,weaving pattern,fabric weight,fabric thickness and finishing treatment concentrations.The best results whose regression degree is R=0.99366,were obtained with two hidden layer networks with 5 neurons.
文摘The influence of mercerization on cotton varieties from Africa,Xinjiang and Australia was studied. The micro-morphology,mechanical property and crystalline structure were analyzed before and after mercerization. Mercerization made the surface of fibers smoother which resulted in improved luster of fiberes with better results observed in Australia,Xinjiang and Africa cotton varieties respectively. Although fiber strenth increased due to orientation of intra fiber cellulose chains,there was a general in the crystallinity index amongst the three varieties of cotton after mercerization.Reduced crystallinity is a function of improved processability and thus Australian cotton is more processable than cotton from Africa and Xinjiang.
文摘In this study fabric stiffness/softness is examined which is an important element of applications on finishing processes of fabric.It is also studied the prediction of the fabric stiffness/softness with help of different parameters.Specific to this aim three different weft densitoes(30 tel/cm),3 different yarn numbers(20/1,24/1,30/1 Nm)and 3 different weaving patterns were used and 27 different fabrics were weaved.During the weaving process warp yarn is 100%polyester and weft yarn is 67-33%cotton/polyester.Three different finishing processes are applied to the 27 different fabrics(softness finishing treatment,crosslinking finishing and antipilling finishing)in 3 different concentrations and at the end there are 243 sample fabrics gathered.Stiffness test was applied to the samples according to the ASTM(American Society for Testing and Materials)D 4032-94 the Circular Bending Method.Test results were evaluated statistically.It was seen that the established model was related with p<0.0001 also,Artificial Neural Network(ANN)model was formed in order to predict the fabric softness using the test results.MATLAB packet model was used in forming the model.ANN was formed with 5 inputs(fabric plait,weft yarn no,weft density,weft type,finishing concentration)and 1 output(stiffness).ANN model was established using feed forward-back propagation network.There were many trials in forming the ANN and the best results were gathered at the values established with 0.97317 regression value,2 hidden layers and 10 neurons.
文摘The purpose of this study is to develop low cost adsorbing materials to remove the heavy metals from waste waters. The outer covering of coconut, coconut shell, is the most abundant in the countries of its plantation and enormous use. Utilization of agricultural waste (coconut shell) in the production of activated carbon potentially leads to produce a highly effective adsorbent generated from low cost raw materials that are available in huge quantity as renewable resources. At present coconut shell is not in use as valuable entity due to which disposal and ultimate environmental problems are faced. In this study coconut shells were impregnated with phosphoric acid and chemically activated at 450 C. The potential to remove chromium (VI) from aqueous solution by using activated coconut shells was investigated by batch experiment. The various sorption parameters i.e pH, sorbent dose, sorbate concentration, agitation time and agitation speed were optimized. The sorption of Cr (VI) onto activated carbon, developed from coconut shell, at pH 2 was achieved 81.25%. The best optimum conditions were obtained when 0.75 gm of sorbent was agitated at 150 rpm with 60 mg/L of sorbate for 40 min. Activated coconut shells has potential to be a good resource material for effective removal of chromium (VI) of low concentration from wastewater.
文摘This study involved the use of uncarbonised and carbonised coir in preparing composites of a given polymer. In this case natural rubber (NR) was used. Uncarbonised coir (UC) and carbonised coir (CC) were separately used to prepare the polymer composites. Carbon black (CB) was also used differently and the filler loadings for all varied between 0 and 50 phr. Before using the uncarbonised coir and carbonised coir, they were characterised on the basis of moisture content, pH, particles size and surface area. The properties of the various composite samples prepared were then investigated. The results of the tests obtained for the NR-UC composites were compared with those of NR-CC and also with those of NR-CB composites. It was observed that for hardness, the results obtained from composites of UC and CC fillers showed similar trends with those of carbon black (CB) reinforced composites, increasing with increase in filler volume. For the tensile strength and modulus a trend of slight rise was observed. There were no sharp rises in values as filler volumes were increased. UC and CC fillers were observed to impart very poorly on the tensile strength and modulus relative to the CB reinforced composites. The results from test for elongation, compression set and flex fatigue showed a falling trend for all the fillers to a comparable level with CB. It was generally observed that the uncarbonised coir presented better potentials for reinforcement than the carbonised coir.