In this study,four new energetic complexes(1)[Cu(vimi)_(4)]DCA_(2),(2)[Co(vimi)_(4)]DCA_(2),(3)[Ni(vimi)_(4)]DCA_(2),and(4)[Cu(vimi)_(4)]CBH_(2)(vimi:1-vinylimidazole,DCA:dicyanamide anion,CBH:cyanoborohydride anion)w...In this study,four new energetic complexes(1)[Cu(vimi)_(4)]DCA_(2),(2)[Co(vimi)_(4)]DCA_(2),(3)[Ni(vimi)_(4)]DCA_(2),and(4)[Cu(vimi)_(4)]CBH_(2)(vimi:1-vinylimidazole,DCA:dicyanamide anion,CBH:cyanoborohydride anion)were prepared,and their structures were characterized via single-crystal X-ray diffraction,elemental analysis,and Fourier-transform infrared spectroscopy.The catalytic effects of the complexes on ammonium perchlorate thermal decomposition were studied via thermal analysis methods,including differential scanning calorimetry(DSC)and thermogravimetric analysis(TGA).Among the complexes,complex 2 showed the best catalytic performance.The two decomposition peaks in the DSC curve of the pure ammonium perchlorate-low-temperature decomposition(LTD)peak:2950C and high-temperature decomposition(HTD)peak:418℃-were merged into a lower decomposition peak(325℃)in the curve of AP with complex 2.Moreover,the heat released by ammonium perchlorate with complex 2(1661.7 J g^(-1))was significantly higher than that released by the pure ammonium perchlorate(814.5 J g^(-1)).The kinetic parameters calculated using Kissinger's method revealed that the complexes had a significant effect on the activation energy of ammonium perchlorate decomposition(223.5 kJ mol^(-1)),and complex 2 lowered the activation energy to 115.6 kJ mol^(-1).The results indicate that complex 2 is a potential energetic additive for ammonium perchlorate-based solid propellants.展开更多
基金the National Natural Science Foundation of China(Grant No.21805008)the Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘In this study,four new energetic complexes(1)[Cu(vimi)_(4)]DCA_(2),(2)[Co(vimi)_(4)]DCA_(2),(3)[Ni(vimi)_(4)]DCA_(2),and(4)[Cu(vimi)_(4)]CBH_(2)(vimi:1-vinylimidazole,DCA:dicyanamide anion,CBH:cyanoborohydride anion)were prepared,and their structures were characterized via single-crystal X-ray diffraction,elemental analysis,and Fourier-transform infrared spectroscopy.The catalytic effects of the complexes on ammonium perchlorate thermal decomposition were studied via thermal analysis methods,including differential scanning calorimetry(DSC)and thermogravimetric analysis(TGA).Among the complexes,complex 2 showed the best catalytic performance.The two decomposition peaks in the DSC curve of the pure ammonium perchlorate-low-temperature decomposition(LTD)peak:2950C and high-temperature decomposition(HTD)peak:418℃-were merged into a lower decomposition peak(325℃)in the curve of AP with complex 2.Moreover,the heat released by ammonium perchlorate with complex 2(1661.7 J g^(-1))was significantly higher than that released by the pure ammonium perchlorate(814.5 J g^(-1)).The kinetic parameters calculated using Kissinger's method revealed that the complexes had a significant effect on the activation energy of ammonium perchlorate decomposition(223.5 kJ mol^(-1)),and complex 2 lowered the activation energy to 115.6 kJ mol^(-1).The results indicate that complex 2 is a potential energetic additive for ammonium perchlorate-based solid propellants.