To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake grap...To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.展开更多
The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migr...The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.展开更多
It was found that silica fume can reduce the maximum hydration heat release rate of cement by microcalorimetry,inhibit CAH_(10),promote the generation of C_(3)AH_(6)and strätlingite C_(2)ASH_(8),or promote the co...It was found that silica fume can reduce the maximum hydration heat release rate of cement by microcalorimetry,inhibit CAH_(10),promote the generation of C_(3)AH_(6)and strätlingite C_(2)ASH_(8),or promote the conversion of CAH_(10)to C_(3)AH_(6).Sodium tripolyphosphate can retard the early hydration of cement,have a slight effect on 1 d hydration products of cement and inhibit the generation hydration products.Sodium tripolyphosphate and silica fume can promote the early hydration of cement,advance the formation of C_(2)ASH_(8)or the conversion from CAH_(10)to C_(3)AH_(6)at 1 d.展开更多
Some proteins perform their biological functions by changing their material states through liquid-liquid phase separation.Upon phase separation,the protein condenses into a concentrated liquid phase and sometimes into...Some proteins perform their biological functions by changing their material states through liquid-liquid phase separation.Upon phase separation,the protein condenses into a concentrated liquid phase and sometimes into a gel phase,changing its dynamic properties and intermolecular interactions,thereby regulating cellular functions.Although the biological significance of this phenomenon has been widely recognized by researchers,there is still a lack of a comprehensive understanding of the structural and dynamic properties of the protein in the condensed phase.In this phase,molecules usually contain domains with varied dynamic properties and undergo intermediate exchanges.Magic angle spinning(MAS)solid-state NMR(SSNMR)experiments are very powerful in studying rigid protein polymers such as amyloid.The incorporation of solution-like experiments into SSNMR and the development of J-coupling based MAS SSNMR techniques extend its ability to study partially mobile segments of proteins in a condensed liquid or gel phase which are not visible by solution NMR or dipolar-coupling based SSNMR.Therefore,it has been applied in studying protein condensation and has provided very important information that is hard to obtain by other techniques.展开更多
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi...The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.展开更多
High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimensi...High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimension and morphology remains a major challenge.Here,scalable HEO morphology modulation is implemented through a salt-assisted strategy,which is achieved by regulating the solubility of reactants and the selective adsorption of salt ions on specific crystal planes.The electrochemical properties,lithiation mechanism,and structure evolution of composition-and morphology-dependent HEO anode are examined in detail.More importantly,the potential advantages of HEOs as electrode materials are evaluated from both theoretical and experimental aspects.Benefiting from the high oxygen vacancy concentration,narrow band gap,and structure durability induced by the multi-element synergy,HEO anode delivers desirable reversible capacity and reaction kinetics.In particular,Mg is evidenced to serve as a structural sustainer that significantly inhibits the volume expansion and retains the rock salt lattice.These new perspectives are expected to open a window of opportunity to compositionally/morphologi cally engineer high-performance HEO electrodes.展开更多
Unburned magnesium aluminate spinel refractories were prepared using sintered magnesium aluminate spinel as the main raw material,phenolic resin as the binder,aluminum powder(2%,4%,and 6%by mass)and silicon powder(whe...Unburned magnesium aluminate spinel refractories were prepared using sintered magnesium aluminate spinel as the main raw material,phenolic resin as the binder,aluminum powder(2%,4%,and 6%by mass)and silicon powder(when Al powder addition is 4%,Si powder addition varies:1%and 2%,by mass)as additives.The effects of the Al powder and Si powder additions on the properties and microstructure of the refractories heat treated at different temperatures(1000,1400,and 1600℃for 3 h)were studied.The results show that the Al powder addition can greatly enhance the cold modulus of rupture of the samples fired at 1000 or 1400℃,and meanwhile AlN reinforcement phase forms in the matrix,which greatly improves the hot modulus of rupture of the samples at 1400℃;however,the heat treatment at 1600℃has little influence on the strength;the addition of Al powder and Si powder results in the formation of low melting point phases,greatly reducing the hot modulus of rupture.However,the low melting point phases promote sintering,which enhances the density and the cold modulus of rupture,and decreases the volume change during heating.The samples added with Al and Si all have higher cold modulus of rupture than those added with Al powder only.展开更多
Boron carbide(B_(4)C)has excellent high-temperature oxidation resistance,high hardness,low relative density,high melting point and excellent abrasive resistance,which is widely used in fields such as refractories,wear...Boron carbide(B_(4)C)has excellent high-temperature oxidation resistance,high hardness,low relative density,high melting point and excellent abrasive resistance,which is widely used in fields such as refractories,wear-resistant materials and lightweight protective materials.The research progress and application of B_(4)C materials in China and overseas in recent years were summarized.The influences of sintering processes(pressureless sintering,hot-pressing sintering,hot isostatic pressing sintering,spark plasma sintering and microwave sintering)and sintering additives(simple substances,oxides and carbides)on the B_(4)C densification were analyzed.The development of B_(4)C materials was prospected.展开更多
The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase com...The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes.展开更多
Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This...Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.展开更多
size of spinel crystals in the CaO–SiO2–MgO –Al2O3–Cr2O3 system was investigated using lab experiments carried out in a carbon tube furnace. Scanning electron microscopy with energy-dispersive X-ray spectroscopy(...size of spinel crystals in the CaO–SiO2–MgO –Al2O3–Cr2O3 system was investigated using lab experiments carried out in a carbon tube furnace. Scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM–EDS) and X-ray diffraction(XRD) were used to analyze the microstructure, components, and the mineral phases of synthetic slags. FactS age 7.1 was used to calculate the crystallization process of the molten slag. The results showed that the addition of Fe2O3 promoted the precipitation of spinel crystals and inhibited the formation of dicalcium silicate. The size of spinel crystals increased from 2.74 to 8.10 μm and the contents of chromium and iron in the spinel varied as the Fe2O3 addition was increased from 0 to 20 wt%. Fe2O3 thermodynamically provided the spinel-forming components to enhance the formation of FeCr2O4, MgFe2O4, and Fe3O4. The addition of Fe2O3 increased the fraction of liquid phase in a certain temperature range and promoted diffusion by decreasing the slag’s viscosity. Therefore, Fe2O3 is beneficial to the growth of spinel crystals in stainless steel slag.展开更多
Ultrathin and air-stable Li metal anodes hold great promise toward high-energy and high-safety Li metal batteries(LMBs).However,the application of LMBs is technically impeded by existing Li metal anodes with large thi...Ultrathin and air-stable Li metal anodes hold great promise toward high-energy and high-safety Li metal batteries(LMBs).However,the application of LMBs is technically impeded by existing Li metal anodes with large thickness,high reactivity,and poor performance.Here,we developed a novel and scalable approach for the construction of a 10-μm-thick flexible and air-stable Li metal anode by conformally encapsulating Li within a multifunctional VN film.Specifically,the highly lithiophilic VN layer guides a uniform deposition of Li,while abundant and multilevel pores arising from assembly of ultrathin nanosheets enable a spatially confined immersion of metallic Li,thus ensuring an ultrathin and sandwiched Li anode.More impressively,the strong hydrophobicity of VN surface can effectively improve the stability of anode to humid air,whereas the highly conductive framework greatly boosts charge transfer dynamics and enhances Li utilization and high-rate capability.Benefiting from such fascinating features,the constructed Li-VN anode exhibits ultrastable cycling stability in both ether(2500 h)and carbonate(900 h)electrolytes,respectively.Moreover,even exposed to ambient air for 12 h,the anode still can retain~78%capacity,demonstrating excellent air-defendable capability.This work affords a promising strategy for fabricating high-performance,high-safety,and low-cost LMBs.展开更多
Developing cost-effective and facile methods to synthesize efficient and stable electrocatalysts for large-scale water splitting is highly desirable but remains a significant challenge.In this study,a facile ambient t...Developing cost-effective and facile methods to synthesize efficient and stable electrocatalysts for large-scale water splitting is highly desirable but remains a significant challenge.In this study,a facile ambient temperature synthesis of hierarchical nickel-iron(oxy)hydroxides nanosheets on iron foam(FF-FN)with both superhydrophilicity and superaerophobicity is reported.Specifically,the as-fabricated FF-FN electrode demonstrates extraordinary oxygen evolution reaction(OER)activity with an ultralow overpotential of 195 mV at 10 mA cm^(-2)and a small Tafel slope of 34 mV dec^(-1)in alkaline media.Further theoretical investigation indicates that the involved lattice oxygen in nickel-iron-based-oxyhydroxide during electrochemical self-reconstruction can significantly reduce the OER reaction overpotential via the dominated lattice oxygen mechanism.The rechargeable Zn-air battery assembled by directly using the as-prepared FF-FN as cathode displays remarkable cycling performance.It is believed that this work affords an economical approach to steer commercial Fe foam into robust electrocatalysts for sustainable energy conversion and storage systems.展开更多
Mercury(Hg)ions can lead to a serious impact on the environment;therefore,it was necessary to find an effective method for absorbing these toxic Hg ions.Here,the adsorbent(Zn-AHMT)was synthesized from zinc nitrate and...Mercury(Hg)ions can lead to a serious impact on the environment;therefore,it was necessary to find an effective method for absorbing these toxic Hg ions.Here,the adsorbent(Zn-AHMT)was synthesized from zinc nitrate and 4-amino 3-hydrazine-5 mercapto-1,2,4-triazole(AHMT)by one-step method and,characterized the microstruc-ture and absorption performance by fourier transform infrared spectroscopy(FTIR),field emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Brunauer-Emmett Teller(BET),Thermal Gravimetric Analyzer(TGA)and X-ray photoelectron spectroscopy(XPS).Through a plethora of measurements,we found that the maximum adsorption capacity was 802.8 mg/g when the optimal pH of Zn-AHMT was 3.0.The isothermal and kinetic experiments confirm that the reaction process of Zn-AHMT was chemisorption,while the adsorption process conforms to the Hill model and pseudo second order kinetic model.Thermodynamic experiments showed that the adsorption process was spontaneous and exothermic.Selective experiments were performed in the simulated wastewater containing Mn,Mg,Cr,Al,Co,Ni,Hg ions.Our results showed that the Zn-AHMT has a stronger affinity for Hg ions.The removal rate of Zn-AHMT remained above 98%,indicating that the Zn-AHMT had a good stability validated by three adsorption-desorption repeatable tests.According to the XPS results,the adsorption reaction of Zn-AHMT was mainly attributed to the chelation and ion exchange.This was further explained by both density functional theory(DFT)calculation and frontier molecular orbital theory.We therefore propose the adsorption mechanism of Zn-AHMT.The adsorption reaction facilitates via the synergistic action of S and N atoms.Moreover,the bonding between the adsorbent and the N atom has been proved to be more stable.Our study demonstrated that Zn-AHMT had a promising application prospect in mercury removal.展开更多
In order to investigate the effect of the catalyst loading mode on the mechanical properties of Si_(3)N_(4) composite MgO-C refractories prepared by nitridation,fused magnesia,flake graphite,silicon powder,and phenoli...In order to investigate the effect of the catalyst loading mode on the mechanical properties of Si_(3)N_(4) composite MgO-C refractories prepared by nitridation,fused magnesia,flake graphite,silicon powder,and phenolic resin were used as the main raw materials,and ferric nitrate as the catalyst to prepare refractories by nitriding at 1350℃.The effects of different catalyst supports(silicon powder,silicon powder+phenolic resin)on the formation of Si_(3)N_(4) in MgO-C refractories and the properties of refractories were studied.The results show that the silicon powder+resin catalyst support promotes the participation ofα-Si_(3)N_(4) in the reaction to generateβ-Si_(3)N_(4) and MgSiN_(2),and generates more SiC.However,this loading mode causes more gas to escape from the refractories and loosens the material structure,which reduces the mechanical properties.On the contrary,MgO-C refractories prepared by nitridation with silicon powder-supported catalysts under the same conditions show higher density and better mechanical properties.展开更多
To improve their mechanical and thermal insulation properties, aluminum silicate fibrous materials with in situ synthesized K_2Ti_6O_(13) whiskers were prepared by firing a mixture of short aluminum silicate fibers an...To improve their mechanical and thermal insulation properties, aluminum silicate fibrous materials with in situ synthesized K_2Ti_6O_(13) whiskers were prepared by firing a mixture of short aluminum silicate fibers and gel powders obtained from a sol–gel process. During the preparation process, the fiber surface was coated with K_2Ti_6O_(13) whiskers after the fibers were subjected to a heat treatment carried out at various temperatures. The effects of process parameters on the microstructure, compressive strength, and thermal conductivity were analyzed systematically. The results show that higher treatment temperatures and longer treatment durations promoted the development of K_2Ti_6O_(13) whiskers on the surface of aluminum silicate fibers; in addition, the intersection structure between whiskers modulated the morphology and volume of the multi-aperture structure among fibers, substantially increasing the fibers' compressive strength and reducing their heat conduction and convective heat transfer at high temperatures.展开更多
We try to use Ho doping combined with band modulation to adjust the thermoelectric properties for BiCuSeO.The results show that Ho doping can increase the carrier concentration and increase the electrical conductivity...We try to use Ho doping combined with band modulation to adjust the thermoelectric properties for BiCuSeO.The results show that Ho doping can increase the carrier concentration and increase the electrical conductivity in the whole temperature range.Although Seebeck coefficient decreases due to the increase of carrier concentration,it still keeps relatively high values,especially in the middle and high temperature range.On this basis,the band-modulation sample can maintain relatively higher carrier concentration while maintaining relatively higher mobility,and further improve the electrical transporting performance.In addition,due to the introduction of a large number of interfaces in the band-modulation samples,the phonon scattering is enhanced effectively and the lattice thermal conductivity is reduced.Finally,the maximal power factor(PF)of 5.18μW·cm^-1K^-2and the dimensionless thermoelectric figure of merits(ZT)of 0.81 are obtained from the 10%Ho modulation doped sample at 873 K.展开更多
Low carbon Al2O3 - C refractories specimens were prepared with tabular alumina (3. 0 - 1.0, 1.0 - 0. 5, 0.6-0.2, ≤0.3, ≤0. 045 and ≤0. 02 mm), active alumina micropowder (≤2 μm ) and silicon ( 〈≤0. 045 mm ...Low carbon Al2O3 - C refractories specimens were prepared with tabular alumina (3. 0 - 1.0, 1.0 - 0. 5, 0.6-0.2, ≤0.3, ≤0. 045 and ≤0. 02 mm), active alumina micropowder (≤2 μm ) and silicon ( 〈≤0. 045 mm ) as main raw materials. Nano carbon black (N220) and natural graphite flake ( 〈≤0. 074 mm ) were adopted as the carbon sources. The specimens were treated at 800, 1 000, 1 200 and 1 400 ℃ under coke embedded atmosphere. The effects of additions of nano carbon black and graphite flake on mechanical properties and thermal shock resistance of the specimens were stud- ied. Their mechanical properties were measured by three- point bending test and thermal shock resistance was de- termined by water quenching method. The phase compo- sition of the specimens was analyzed with X-ray diffrac- tion and microstruetures were observed through FESEM. The results reveal that: (1) the strengths of A1203 - C refractories with these two carbon sources show no big differences when coked at lower than 1 000 ℃ ; when coked at over 1 200 ℃ , the strengths of the specimens with graphite added are much higher than those of the specimens containing carbon black due to much more sil- icon carbide whiskers formed; (2) since the nano carbon black has small particle size, they can be filled into in- terstice of Al2O3 particles to form the nano carbon net- work structure, absorbing and relieving the thermal stressgenerated from expansion and contraction and reducing the thermal expansion coefficient of the specimens, thus their thermal shock resistance is better than that of the specimens containing graphite ; ( 3 ) low carbon Al2 O3 - C refractories with good mechanical properties and excellent thermal shock resistance can be prepared with combi- nation of nano carbon black and graphite flake.展开更多
Using L-glutathione(GSH) as a capping agent,Zn Se/GSH quantum dots(QDs) were prepared under microwave irradiation and irradiated under dark, ultraviolet light and incandescent light, respectively. The properties and i...Using L-glutathione(GSH) as a capping agent,Zn Se/GSH quantum dots(QDs) were prepared under microwave irradiation and irradiated under dark, ultraviolet light and incandescent light, respectively. The properties and interaction of different lights irradiated ZnSe/GSH QDs and bovine serum albumin(BSA) were studied systematically. The fluorescence(FL) spectra results reveal that the quenching mechanism are all the static quenching in nature. The quenching constant(Ksv) and binding constant(K) value of different irradiated Zn Se/GSH QDs and BSA all increased with the change of light types from dark to incandescent light and UV light. The number of binding site(n) is close to 1 at different temperatures. The lighting types influence the enthalpy and entropy changes. The Fourier transform infrared(FTIR) spectra indicate that the light induced GSH ligand will facilitate photocatalytic oxidation on the surface of ZnSe/GSH QDs. The circular dichroism(CD)results show that the α-helicity content of BSA decreases from 60.34%, 59.31%, to 58.79% under UV lighting,incandescent lighting and dark conditions. The interaction results of different lights illuminated ZnSe/GSH QDs with BSA by CD spectra method matches well with that by FL and FTIR spectra. That is, the interaction of ZnSe/GSH QDs and BSA from strong to weak is UV light, incandescent light and dark in sequence.展开更多
The microstructure evolution and its effects on the mechanical performance of 2000 MPa bridge cable steel wires were investigated by transmission electron microscope(TEM),electron backscatter diffraction(EBSD),X-ray d...The microstructure evolution and its effects on the mechanical performance of 2000 MPa bridge cable steel wires were investigated by transmission electron microscope(TEM),electron backscatter diffraction(EBSD),X-ray diffractometer(XRD)and mechanical tests.Experimental results reveal that,with the increasing strain from 0 to 1.42,a fiber structure and a<110>fiber texture aligned with the wire axis are gradually developed accompanied by cementite decomposition and the formation of sub-grains;the tensile strength increases linearly from 1510 to 2025 MPa,and the reduction of the area is stable with a slight decline from 44%to 36%.After annealing at 450℃for different times,pronounced changes in the microstructure occur.Cementite lamella fragment into coarser globules corresponding to a remarkable spheroidization process,while ferrite domains recover and recrystallize,and this process is associated to modifications in the mechanical properties.Furthermore,based on the observations on dislocation lines crossing through cementite lamellae,a possible mechanism of cementite decomposition is discussed.展开更多
文摘To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.
基金funding from the Natural Science Foundation of Hubei Province,China(Grant No.2022CFA031)supported by the Natural Science Foundation of China(Grant No.22309056).
文摘The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.
基金Funded by the National Natural Science Foundation of China(No.51802235)Hubei Science and Technology Innovation Talent Project,China(No.2023DJC087)。
文摘It was found that silica fume can reduce the maximum hydration heat release rate of cement by microcalorimetry,inhibit CAH_(10),promote the generation of C_(3)AH_(6)and strätlingite C_(2)ASH_(8),or promote the conversion of CAH_(10)to C_(3)AH_(6).Sodium tripolyphosphate can retard the early hydration of cement,have a slight effect on 1 d hydration products of cement and inhibit the generation hydration products.Sodium tripolyphosphate and silica fume can promote the early hydration of cement,advance the formation of C_(2)ASH_(8)or the conversion from CAH_(10)to C_(3)AH_(6)at 1 d.
基金supported by the National Natural Science Foundation of China(No.32171185,No.31770790)the National Key R&D Program of China(No.2017YFA0504804).
文摘Some proteins perform their biological functions by changing their material states through liquid-liquid phase separation.Upon phase separation,the protein condenses into a concentrated liquid phase and sometimes into a gel phase,changing its dynamic properties and intermolecular interactions,thereby regulating cellular functions.Although the biological significance of this phenomenon has been widely recognized by researchers,there is still a lack of a comprehensive understanding of the structural and dynamic properties of the protein in the condensed phase.In this phase,molecules usually contain domains with varied dynamic properties and undergo intermediate exchanges.Magic angle spinning(MAS)solid-state NMR(SSNMR)experiments are very powerful in studying rigid protein polymers such as amyloid.The incorporation of solution-like experiments into SSNMR and the development of J-coupling based MAS SSNMR techniques extend its ability to study partially mobile segments of proteins in a condensed liquid or gel phase which are not visible by solution NMR or dipolar-coupling based SSNMR.Therefore,it has been applied in studying protein condensation and has provided very important information that is hard to obtain by other techniques.
基金supported financially by the Natural Science Foundation of Qinghai(2022-ZJ-928)the Special Project for Transformation of Scientific and Technological Achievements of Qinghai Province(2023-GX-102).
文摘The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.
基金supported by the National Natural Science Foundation of China(52104309,52272021)the Natural Science Foundation of Hubei Province(2021CFB010)。
文摘High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimension and morphology remains a major challenge.Here,scalable HEO morphology modulation is implemented through a salt-assisted strategy,which is achieved by regulating the solubility of reactants and the selective adsorption of salt ions on specific crystal planes.The electrochemical properties,lithiation mechanism,and structure evolution of composition-and morphology-dependent HEO anode are examined in detail.More importantly,the potential advantages of HEOs as electrode materials are evaluated from both theoretical and experimental aspects.Benefiting from the high oxygen vacancy concentration,narrow band gap,and structure durability induced by the multi-element synergy,HEO anode delivers desirable reversible capacity and reaction kinetics.In particular,Mg is evidenced to serve as a structural sustainer that significantly inhibits the volume expansion and retains the rock salt lattice.These new perspectives are expected to open a window of opportunity to compositionally/morphologi cally engineer high-performance HEO electrodes.
文摘Unburned magnesium aluminate spinel refractories were prepared using sintered magnesium aluminate spinel as the main raw material,phenolic resin as the binder,aluminum powder(2%,4%,and 6%by mass)and silicon powder(when Al powder addition is 4%,Si powder addition varies:1%and 2%,by mass)as additives.The effects of the Al powder and Si powder additions on the properties and microstructure of the refractories heat treated at different temperatures(1000,1400,and 1600℃for 3 h)were studied.The results show that the Al powder addition can greatly enhance the cold modulus of rupture of the samples fired at 1000 or 1400℃,and meanwhile AlN reinforcement phase forms in the matrix,which greatly improves the hot modulus of rupture of the samples at 1400℃;however,the heat treatment at 1600℃has little influence on the strength;the addition of Al powder and Si powder results in the formation of low melting point phases,greatly reducing the hot modulus of rupture.However,the low melting point phases promote sintering,which enhances the density and the cold modulus of rupture,and decreases the volume change during heating.The samples added with Al and Si all have higher cold modulus of rupture than those added with Al powder only.
文摘Boron carbide(B_(4)C)has excellent high-temperature oxidation resistance,high hardness,low relative density,high melting point and excellent abrasive resistance,which is widely used in fields such as refractories,wear-resistant materials and lightweight protective materials.The research progress and application of B_(4)C materials in China and overseas in recent years were summarized.The influences of sintering processes(pressureless sintering,hot-pressing sintering,hot isostatic pressing sintering,spark plasma sintering and microwave sintering)and sintering additives(simple substances,oxides and carbides)on the B_(4)C densification were analyzed.The development of B_(4)C materials was prospected.
基金Funded by National Natural Science Foundation of China(Nos.51878003 and 51778513)Major Special Science and Technology Project of Hubei Province(No.2018AAA001)the National Basic Research Program of China(973 Program)(No.2015CB655101).
文摘The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes.
基金financially supported by the National Natural Science Foundation of China(Nos.52174217 and 52304354)the China Postdoctoral Science Foundation(No.2020M682495)。
文摘Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.
基金financially supported by the National Natural Science Foundation of China (No. 51404173)Hubei Provincial Natural Science Foundation (No. 2016CFB579)+1 种基金China Postdoctoral Science Foundation (No. 2014M562073)State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology
文摘size of spinel crystals in the CaO–SiO2–MgO –Al2O3–Cr2O3 system was investigated using lab experiments carried out in a carbon tube furnace. Scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM–EDS) and X-ray diffraction(XRD) were used to analyze the microstructure, components, and the mineral phases of synthetic slags. FactS age 7.1 was used to calculate the crystallization process of the molten slag. The results showed that the addition of Fe2O3 promoted the precipitation of spinel crystals and inhibited the formation of dicalcium silicate. The size of spinel crystals increased from 2.74 to 8.10 μm and the contents of chromium and iron in the spinel varied as the Fe2O3 addition was increased from 0 to 20 wt%. Fe2O3 thermodynamically provided the spinel-forming components to enhance the formation of FeCr2O4, MgFe2O4, and Fe3O4. The addition of Fe2O3 increased the fraction of liquid phase in a certain temperature range and promoted diffusion by decreasing the slag’s viscosity. Therefore, Fe2O3 is beneficial to the growth of spinel crystals in stainless steel slag.
基金financialy supported by National Natural Science Foundation of China(52002297,51974208,and 21875080)Wuhan Yellow Crane Talents ProgramNumerical calculation is supported by High-Performance Computing Center of Wuhan University of Science and Technology)
文摘Ultrathin and air-stable Li metal anodes hold great promise toward high-energy and high-safety Li metal batteries(LMBs).However,the application of LMBs is technically impeded by existing Li metal anodes with large thickness,high reactivity,and poor performance.Here,we developed a novel and scalable approach for the construction of a 10-μm-thick flexible and air-stable Li metal anode by conformally encapsulating Li within a multifunctional VN film.Specifically,the highly lithiophilic VN layer guides a uniform deposition of Li,while abundant and multilevel pores arising from assembly of ultrathin nanosheets enable a spatially confined immersion of metallic Li,thus ensuring an ultrathin and sandwiched Li anode.More impressively,the strong hydrophobicity of VN surface can effectively improve the stability of anode to humid air,whereas the highly conductive framework greatly boosts charge transfer dynamics and enhances Li utilization and high-rate capability.Benefiting from such fascinating features,the constructed Li-VN anode exhibits ultrastable cycling stability in both ether(2500 h)and carbonate(900 h)electrolytes,respectively.Moreover,even exposed to ambient air for 12 h,the anode still can retain~78%capacity,demonstrating excellent air-defendable capability.This work affords a promising strategy for fabricating high-performance,high-safety,and low-cost LMBs.
基金sponsored by the Guangdong-Hong Kong-Macao Joint Laboratory(grant no.2019B121205001)Macao Science and Technology Development Fund(FDCT)for funding(project no.0098/2020/A2)+2 种基金the support of the National Natural Science Foundation of China(Grant No.52104309)Natural Science Foundation of Hubei Province(2021CFB011)“Macao Young Scholars Program,”China(AM2020004).
文摘Developing cost-effective and facile methods to synthesize efficient and stable electrocatalysts for large-scale water splitting is highly desirable but remains a significant challenge.In this study,a facile ambient temperature synthesis of hierarchical nickel-iron(oxy)hydroxides nanosheets on iron foam(FF-FN)with both superhydrophilicity and superaerophobicity is reported.Specifically,the as-fabricated FF-FN electrode demonstrates extraordinary oxygen evolution reaction(OER)activity with an ultralow overpotential of 195 mV at 10 mA cm^(-2)and a small Tafel slope of 34 mV dec^(-1)in alkaline media.Further theoretical investigation indicates that the involved lattice oxygen in nickel-iron-based-oxyhydroxide during electrochemical self-reconstruction can significantly reduce the OER reaction overpotential via the dominated lattice oxygen mechanism.The rechargeable Zn-air battery assembled by directly using the as-prepared FF-FN as cathode displays remarkable cycling performance.It is believed that this work affords an economical approach to steer commercial Fe foam into robust electrocatalysts for sustainable energy conversion and storage systems.
基金the Hubei Provincial Department of Education Science and Technology Research Program Young Talent Project(Q20201102)the National Natural Science Foundation of China(51864042 and 51804220).
文摘Mercury(Hg)ions can lead to a serious impact on the environment;therefore,it was necessary to find an effective method for absorbing these toxic Hg ions.Here,the adsorbent(Zn-AHMT)was synthesized from zinc nitrate and 4-amino 3-hydrazine-5 mercapto-1,2,4-triazole(AHMT)by one-step method and,characterized the microstruc-ture and absorption performance by fourier transform infrared spectroscopy(FTIR),field emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Brunauer-Emmett Teller(BET),Thermal Gravimetric Analyzer(TGA)and X-ray photoelectron spectroscopy(XPS).Through a plethora of measurements,we found that the maximum adsorption capacity was 802.8 mg/g when the optimal pH of Zn-AHMT was 3.0.The isothermal and kinetic experiments confirm that the reaction process of Zn-AHMT was chemisorption,while the adsorption process conforms to the Hill model and pseudo second order kinetic model.Thermodynamic experiments showed that the adsorption process was spontaneous and exothermic.Selective experiments were performed in the simulated wastewater containing Mn,Mg,Cr,Al,Co,Ni,Hg ions.Our results showed that the Zn-AHMT has a stronger affinity for Hg ions.The removal rate of Zn-AHMT remained above 98%,indicating that the Zn-AHMT had a good stability validated by three adsorption-desorption repeatable tests.According to the XPS results,the adsorption reaction of Zn-AHMT was mainly attributed to the chelation and ion exchange.This was further explained by both density functional theory(DFT)calculation and frontier molecular orbital theory.We therefore propose the adsorption mechanism of Zn-AHMT.The adsorption reaction facilitates via the synergistic action of S and N atoms.Moreover,the bonding between the adsorbent and the N atom has been proved to be more stable.Our study demonstrated that Zn-AHMT had a promising application prospect in mercury removal.
基金supported by the National Natural Science Foundation of China(U20A20239)the Natural Science Foundation of Hubei Province(2020CFB692)the Scientific Research Fund of Hunan Provincial Education Department(18A428).
文摘In order to investigate the effect of the catalyst loading mode on the mechanical properties of Si_(3)N_(4) composite MgO-C refractories prepared by nitridation,fused magnesia,flake graphite,silicon powder,and phenolic resin were used as the main raw materials,and ferric nitrate as the catalyst to prepare refractories by nitriding at 1350℃.The effects of different catalyst supports(silicon powder,silicon powder+phenolic resin)on the formation of Si_(3)N_(4) in MgO-C refractories and the properties of refractories were studied.The results show that the silicon powder+resin catalyst support promotes the participation ofα-Si_(3)N_(4) in the reaction to generateβ-Si_(3)N_(4) and MgSiN_(2),and generates more SiC.However,this loading mode causes more gas to escape from the refractories and loosens the material structure,which reduces the mechanical properties.On the contrary,MgO-C refractories prepared by nitridation with silicon powder-supported catalysts under the same conditions show higher density and better mechanical properties.
基金financially supported by the National Natural Science Foundation of China (Nos. 51474166 and 51672195)the Program for Innovative Teams of Out-standing Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province (No. T201602)
文摘To improve their mechanical and thermal insulation properties, aluminum silicate fibrous materials with in situ synthesized K_2Ti_6O_(13) whiskers were prepared by firing a mixture of short aluminum silicate fibers and gel powders obtained from a sol–gel process. During the preparation process, the fiber surface was coated with K_2Ti_6O_(13) whiskers after the fibers were subjected to a heat treatment carried out at various temperatures. The effects of process parameters on the microstructure, compressive strength, and thermal conductivity were analyzed systematically. The results show that higher treatment temperatures and longer treatment durations promoted the development of K_2Ti_6O_(13) whiskers on the surface of aluminum silicate fibers; in addition, the intersection structure between whiskers modulated the morphology and volume of the multi-aperture structure among fibers, substantially increasing the fibers' compressive strength and reducing their heat conduction and convective heat transfer at high temperatures.
基金Supported by the National Natural Science Foundation of China under Grant No.51674181。
文摘We try to use Ho doping combined with band modulation to adjust the thermoelectric properties for BiCuSeO.The results show that Ho doping can increase the carrier concentration and increase the electrical conductivity in the whole temperature range.Although Seebeck coefficient decreases due to the increase of carrier concentration,it still keeps relatively high values,especially in the middle and high temperature range.On this basis,the band-modulation sample can maintain relatively higher carrier concentration while maintaining relatively higher mobility,and further improve the electrical transporting performance.In addition,due to the introduction of a large number of interfaces in the band-modulation samples,the phonon scattering is enhanced effectively and the lattice thermal conductivity is reduced.Finally,the maximal power factor(PF)of 5.18μW·cm^-1K^-2and the dimensionless thermoelectric figure of merits(ZT)of 0.81 are obtained from the 10%Ho modulation doped sample at 873 K.
文摘Low carbon Al2O3 - C refractories specimens were prepared with tabular alumina (3. 0 - 1.0, 1.0 - 0. 5, 0.6-0.2, ≤0.3, ≤0. 045 and ≤0. 02 mm), active alumina micropowder (≤2 μm ) and silicon ( 〈≤0. 045 mm ) as main raw materials. Nano carbon black (N220) and natural graphite flake ( 〈≤0. 074 mm ) were adopted as the carbon sources. The specimens were treated at 800, 1 000, 1 200 and 1 400 ℃ under coke embedded atmosphere. The effects of additions of nano carbon black and graphite flake on mechanical properties and thermal shock resistance of the specimens were stud- ied. Their mechanical properties were measured by three- point bending test and thermal shock resistance was de- termined by water quenching method. The phase compo- sition of the specimens was analyzed with X-ray diffrac- tion and microstruetures were observed through FESEM. The results reveal that: (1) the strengths of A1203 - C refractories with these two carbon sources show no big differences when coked at lower than 1 000 ℃ ; when coked at over 1 200 ℃ , the strengths of the specimens with graphite added are much higher than those of the specimens containing carbon black due to much more sil- icon carbide whiskers formed; (2) since the nano carbon black has small particle size, they can be filled into in- terstice of Al2O3 particles to form the nano carbon net- work structure, absorbing and relieving the thermal stressgenerated from expansion and contraction and reducing the thermal expansion coefficient of the specimens, thus their thermal shock resistance is better than that of the specimens containing graphite ; ( 3 ) low carbon Al2 O3 - C refractories with good mechanical properties and excellent thermal shock resistance can be prepared with combi- nation of nano carbon black and graphite flake.
基金Funded by the Natural Science Foundation of Hubei Province(2017CFB680)the Open Fund of the State Key Laboratory of Refractories and Metallurgy Wuhan University of Science and Technology(G201703)+2 种基金the Fund of Key Laboratory of Measurement and Control System for Offshore Environment,Fuqing Branch of Fujian Normal University(SI-KF1604)the Guiding Projects in Fujian Province(2018H0013)the Key Natural Fund Projects of Universities in Fujian Province(JZ160490)
文摘Using L-glutathione(GSH) as a capping agent,Zn Se/GSH quantum dots(QDs) were prepared under microwave irradiation and irradiated under dark, ultraviolet light and incandescent light, respectively. The properties and interaction of different lights irradiated ZnSe/GSH QDs and bovine serum albumin(BSA) were studied systematically. The fluorescence(FL) spectra results reveal that the quenching mechanism are all the static quenching in nature. The quenching constant(Ksv) and binding constant(K) value of different irradiated Zn Se/GSH QDs and BSA all increased with the change of light types from dark to incandescent light and UV light. The number of binding site(n) is close to 1 at different temperatures. The lighting types influence the enthalpy and entropy changes. The Fourier transform infrared(FTIR) spectra indicate that the light induced GSH ligand will facilitate photocatalytic oxidation on the surface of ZnSe/GSH QDs. The circular dichroism(CD)results show that the α-helicity content of BSA decreases from 60.34%, 59.31%, to 58.79% under UV lighting,incandescent lighting and dark conditions. The interaction results of different lights illuminated ZnSe/GSH QDs with BSA by CD spectra method matches well with that by FL and FTIR spectra. That is, the interaction of ZnSe/GSH QDs and BSA from strong to weak is UV light, incandescent light and dark in sequence.
基金Funded by the National Key R&D Program of China(No.2017YFB0304801)
文摘The microstructure evolution and its effects on the mechanical performance of 2000 MPa bridge cable steel wires were investigated by transmission electron microscope(TEM),electron backscatter diffraction(EBSD),X-ray diffractometer(XRD)and mechanical tests.Experimental results reveal that,with the increasing strain from 0 to 1.42,a fiber structure and a<110>fiber texture aligned with the wire axis are gradually developed accompanied by cementite decomposition and the formation of sub-grains;the tensile strength increases linearly from 1510 to 2025 MPa,and the reduction of the area is stable with a slight decline from 44%to 36%.After annealing at 450℃for different times,pronounced changes in the microstructure occur.Cementite lamella fragment into coarser globules corresponding to a remarkable spheroidization process,while ferrite domains recover and recrystallize,and this process is associated to modifications in the mechanical properties.Furthermore,based on the observations on dislocation lines crossing through cementite lamellae,a possible mechanism of cementite decomposition is discussed.