To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve...To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve the system efficiency. The expander and the compressor are connected to the same shaft and integrated into one unit, with the latter being driven by the former, thus the transfer loss and leakage loss can be decreased greatly. In these systems, the expander can be either connected with the first stage compressor (shortened as DCDL cycle) or the second stage compressor (shortened as DCDH cycle), but the two configuration ways can get different performances. By setting up theoretical model for two kinds of expander configuration ways in the transcritical carbon dioxide two-stage compression cycle, the first and the second laws of thermodynamics are used to analyze the coefficient of performance, exergy efficiency, inter-stage pressure, discharge temperature and exergy losses of each component for the two cycles. From the model results, the performance of DCDH cycle is better than that of DCDL cycle. The analysis results are indispensable to providing a theoretical basis for practical design and operating.展开更多
Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major re...Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO 2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO 2 transcritical cycle with ejector cycle is proposed in this paper. The CO 2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH 3, H 2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO 2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.展开更多
In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy ...In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy analysis model is applied. The effects of heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures on the exergy loss, exergy efficiency and the coefficient of performance (COP) of the expansion turbine cycle are analyzed. It is found that the great percentages of exergy losses take place in the gas cooler and compressor. Moreover, heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures have strong influence on the exergy efficiency, COP and the exergy loss of each component. The analysis shows that there exists an optimal heat rejection pressure corresponding to the maximum exergy efficiency and COP, respectively. The results are of significance in providing theoretical basis for optimal design and the control of the transcritical carbon dioxide system with an expansion turbine.展开更多
The leakage research on supercritical carbon dioxide fluid in rolling piston expander was investigated experimentally.Using expander instead of throttle valve is an important way to improve the efficiency of carbon di...The leakage research on supercritical carbon dioxide fluid in rolling piston expander was investigated experimentally.Using expander instead of throttle valve is an important way to improve the efficiency of carbon dioxide refrigeration system.However,the supercritical fluid leakage in expander is serious and is the main factor affecting the expander's efficiency.This paper presented and compared four classic leakage models.The analysis indicated that laminar leakage model is suitable in leakage simulation of expander.A leakage test system,including the leakage test part which has two types of leakage specimens with different gaps ranging from 5 to 15 m,was established.The experimental results indicated that lubricant film played an important role.When the leakage clearance of cylindrical specimen was 5 m,the mass flow rate of leakage was about 0.88 g s-1.The data was 3.638 g s-1 with leakage clearance being 10 m and 7.11g s-1 with leakage clearance being 15 m.A modified leakage model was developed,whose average deviation was within 10% compared with the experimental data.At last,this paper simulated the leakage in rolling piston expander presented by Tian et al.(2010).The leakage between rolling piston and cylinder was the most serious part with the value up to 0.04 kg s-1.展开更多
The expansion mechanism inside carbon dioxide expander is analyzed theoretically in this paper.The mechanism analysis of metastable equilibrium indicates that there is a potential barrier during phase change process.T...The expansion mechanism inside carbon dioxide expander is analyzed theoretically in this paper.The mechanism analysis of metastable equilibrium indicates that there is a potential barrier during phase change process.That is to say energy is required to overcome the potential barrier when the new interface is formed from primary phase.The superheat of liquid is the impetus of phase change and has an exponential decrease with the increase of the saturated temperature of fluid.The analysis also indicates that there is a critical radius during the phase change process.The bubble will grow up when its radius is larger than the critical value,otherwise,will disappear.When considering the metastable phase change,calculation of P and V during expansion process indicates that the phase-change will be delayed with the decline of pressure,which is called lag phenomenon.The phase-change delay time decreases with the increase of initial temperature.When the initial temperature is close to the critical temperature,the delay time is close to zero.The phase-change delay brings energy losses,which decrease with the increase of initial temperature and its decrease ratio also has a decrease trend.When the initial pressure is 10 MPa,the energy loss will be 1.06 W with an initial temperature of 10℃ while 0.34 W with that of 20℃.展开更多
文摘To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve the system efficiency. The expander and the compressor are connected to the same shaft and integrated into one unit, with the latter being driven by the former, thus the transfer loss and leakage loss can be decreased greatly. In these systems, the expander can be either connected with the first stage compressor (shortened as DCDL cycle) or the second stage compressor (shortened as DCDH cycle), but the two configuration ways can get different performances. By setting up theoretical model for two kinds of expander configuration ways in the transcritical carbon dioxide two-stage compression cycle, the first and the second laws of thermodynamics are used to analyze the coefficient of performance, exergy efficiency, inter-stage pressure, discharge temperature and exergy losses of each component for the two cycles. From the model results, the performance of DCDH cycle is better than that of DCDL cycle. The analysis results are indispensable to providing a theoretical basis for practical design and operating.
文摘Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO 2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO 2 transcritical cycle with ejector cycle is proposed in this paper. The CO 2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH 3, H 2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO 2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.
基金SupportedbytheSpecializedResearchFundfortheDoctoralProgramofHigherEducation (No .D0 2 0 0 10 5)
文摘In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy analysis model is applied. The effects of heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures on the exergy loss, exergy efficiency and the coefficient of performance (COP) of the expansion turbine cycle are analyzed. It is found that the great percentages of exergy losses take place in the gas cooler and compressor. Moreover, heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures have strong influence on the exergy efficiency, COP and the exergy loss of each component. The analysis shows that there exists an optimal heat rejection pressure corresponding to the maximum exergy efficiency and COP, respectively. The results are of significance in providing theoretical basis for optimal design and the control of the transcritical carbon dioxide system with an expansion turbine.
基金supported by the National Natural Science Foundation of China (Grant No. 50676064)
文摘The leakage research on supercritical carbon dioxide fluid in rolling piston expander was investigated experimentally.Using expander instead of throttle valve is an important way to improve the efficiency of carbon dioxide refrigeration system.However,the supercritical fluid leakage in expander is serious and is the main factor affecting the expander's efficiency.This paper presented and compared four classic leakage models.The analysis indicated that laminar leakage model is suitable in leakage simulation of expander.A leakage test system,including the leakage test part which has two types of leakage specimens with different gaps ranging from 5 to 15 m,was established.The experimental results indicated that lubricant film played an important role.When the leakage clearance of cylindrical specimen was 5 m,the mass flow rate of leakage was about 0.88 g s-1.The data was 3.638 g s-1 with leakage clearance being 10 m and 7.11g s-1 with leakage clearance being 15 m.A modified leakage model was developed,whose average deviation was within 10% compared with the experimental data.At last,this paper simulated the leakage in rolling piston expander presented by Tian et al.(2010).The leakage between rolling piston and cylinder was the most serious part with the value up to 0.04 kg s-1.
基金supported by the National Natural Science Foundation of China (Grant No 50676064)
文摘The expansion mechanism inside carbon dioxide expander is analyzed theoretically in this paper.The mechanism analysis of metastable equilibrium indicates that there is a potential barrier during phase change process.That is to say energy is required to overcome the potential barrier when the new interface is formed from primary phase.The superheat of liquid is the impetus of phase change and has an exponential decrease with the increase of the saturated temperature of fluid.The analysis also indicates that there is a critical radius during the phase change process.The bubble will grow up when its radius is larger than the critical value,otherwise,will disappear.When considering the metastable phase change,calculation of P and V during expansion process indicates that the phase-change will be delayed with the decline of pressure,which is called lag phenomenon.The phase-change delay time decreases with the increase of initial temperature.When the initial temperature is close to the critical temperature,the delay time is close to zero.The phase-change delay brings energy losses,which decrease with the increase of initial temperature and its decrease ratio also has a decrease trend.When the initial pressure is 10 MPa,the energy loss will be 1.06 W with an initial temperature of 10℃ while 0.34 W with that of 20℃.