期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
Fine mapping and characterization of stripe rust resistance gene YrAYH in near-isogenic lines derived from a cross involving wheat landrace Anyuehong 被引量:1
1
作者 Li Long Jue Li +19 位作者 Linyu Huang Huiling Jin Fangnian Guan Haipeng Zhang Sasa Zhao Hao Li Zhien Pu Wei Li Qiantao Jiang Yuming Wei Jian Ma Houyang Kang Shoufen Dai Pengfei Qi Qiang Xu Mei Deng Youliang Zheng Yunfeng Jiang Matthew James Moscou Guoyue Chen 《The Crop Journal》 SCIE CSCD 2024年第3期826-835,共10页
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we ... Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length. 展开更多
关键词 Candidate gene analysis Crop protection Puccinia striiformis Transcriptome analyses
下载PDF
Towards cultivar-oriented gene discovery for better crops
2
作者 Dengcai Liu 《The Crop Journal》 SCIE CSCD 2024年第3期670-675,共6页
The continued expansion of the world population,increasingly inconsistent climate and shrinking agricultural resources present major challenges to crop breeding.Fortunately,the increasing ability to discover and manip... The continued expansion of the world population,increasingly inconsistent climate and shrinking agricultural resources present major challenges to crop breeding.Fortunately,the increasing ability to discover and manipulate genes creates new opportunities to develop more productive and resilient cultivars.Many genes have been described in papers as being beneficial for yield increase.However,few of them have been translated into increased yield on farms.In contrast,commercial breeders are facing gene decidophobia,i.e.,puzzled about which gene to choose for breeding among the many identified,a huge chasm between gene discovery and cultivar innovation.The purpose of this paper is to draw attention to the shortfalls in current gene discovery research and to emphasise the need to align with cultivar innovation.The methodology dictates that genetic studies not only focus on gene discovery but also pay good attention to the genetic backgrounds,experimental validation in relevant environments,appropriate crop management,and data reusability.The close of the gaps should accelerate the application of molecular study in breeding and contribute to future global food security. 展开更多
关键词 Cultivar innovation Data reusability Gene discovery Gene decidophobia Omnigenic model
下载PDF
Investigating the mechanisms of isochorismate synthase:An approach to improve salicylic acid synthesis and increase resistance to Fusarium head blight in wheat
3
作者 Ya-Zhou Zhang Jie Man +7 位作者 Dan Xu Lan Wen Yinghui Li Mei Deng Qian-Tao Jiang Qiang Xu Guo-Yue Chen Yu-Ming Wei 《The Crop Journal》 SCIE CSCD 2024年第4期1054-1063,共10页
Salicylic acid(SA),a vital endogenous hormone,plays a crucial role in plant growth and the response to abiotic and biotic stress.Isochorismate synthase(ICS)and phenylalanine ammonia lyase(PAL)are critical rate-limitin... Salicylic acid(SA),a vital endogenous hormone,plays a crucial role in plant growth and the response to abiotic and biotic stress.Isochorismate synthase(ICS)and phenylalanine ammonia lyase(PAL)are critical rate-limiting enzymes for SA synthesis.Fusarium head blight(FHB)seriously threatens the safety of wheat production,but increasing the content of SA can enhance FHB resistance.However,the pathway of SA synthesis and regulation in wheat remains unknown.In this study,three wheat ICS(TaICSA,TaICSB,and TaICSD)were identified,and their functions were validated in vitro for isomerizing chorismate to isochorismate.The mutation of one or two homoeoalleles of TaICSA,TaICSB,and TaICSD in the wheat variety‘Cadenza’reduced SA levels under ultraviolet treatment and Fusarium graminearum infection,further enhancing sensitivity to FHB.Overexpression of TaICSA can significantly enhance SA levels and resistance to FHB.To further study SA synthesis pathways in wheat and avoid interference with pathogenicity related genes,the leaves of wild-type Cadenza and different TaICS mutant lines were subjected to ultraviolet treatment for transcriptomic analysis.The results showed that 37 PALs might be involved in endogenous SA synthesis,and 82 WRKY and MYB family transcription factors may regulate the expression of ICS and PAL.These results were further confirmed by RT-PCR.In conclusion,this study expands our knowledge of SA biosynthesis and identifies TaICSA,as well as several additional candidate genes that encode transcription factors for regulating endogenous SA levels,as part of an efficient strategy for enhancing FHB resistance in wheat. 展开更多
关键词 Salicylic acid CHORISMATE Isochorismate RNA-SEQ Phenylalamine ammonia lyase
下载PDF
Mapping of powdery mildew resistance genes transferred to common wheat from wild emmer wheat revealed three functional Pm60 haplotypes
4
作者 Wenxin Wei Nannan Liu +14 位作者 Shengnan Zhang Jing Zhang Wei Pan Xiaoming Xie Zuhuan Yang Junna Sun Jun Ma Zhaorong Hu Weilong Guo Qiaoling Luo Jingzhong Xie Fei He Yinghui Li Chaojie Xie Qixin Sun 《The Crop Journal》 SCIE CSCD 2024年第2期540-548,共9页
Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a ... Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a valuable genetic resource for wheat disease resistance breeding programs.We developed three hexaploid pre-breeding lines with PM resistance genes derived from three WEW accessions.These resistant pre-breeding lines were crossed with susceptible common wheat accessions.Segregations in the F2populations were 3 resistant:1 susceptible,suggesting a single dominant allele in each resistant parent.Mapping of the resistance gene in each line indicated a single locus on the long arm of chromosome 7A,at the approximate location of previously cloned Pm60 from T.urartu.Sanger sequencing revealed three different Pm60 haplotypes(Hap 3,Hap 5,and Hap 6).Co-segregating diagnostic markers were developed for identification and selection of each haplotype.The resistance function of each haplotype was verified by the virus-induced gene silencing(VIGS).Common wheat lines carrying each of these Pm60 haplotypes were resistant to most Bgt isolates and differences in the response arrays suggested allelic variation in response. 展开更多
关键词 Alleles Blumeria graminus Marker-assisted selection Molecular marker Triticum dicoccoides
下载PDF
Synopsis of Leymus Hochst.(Triticeae:Poaceae) 被引量:4
5
作者 Chi YEN Jun-Liang YANG Bernard R. BAUM 《Journal of Systematics and Evolution》 SCIE CSCD 北大核心 2009年第1期67-86,共20页
Leymus is a genus in the Triticeae tribe, Poaceae. The taxa of this genus are allopolyploid species which possess the Ns and Xm genomes. According to cytological, cytogenetic and molecular genetic analyses, some speci... Leymus is a genus in the Triticeae tribe, Poaceae. The taxa of this genus are allopolyploid species which possess the Ns and Xm genomes. According to cytological, cytogenetic and molecular genetic analyses, some species of Hystrix and Elymus ought to be transferred to this genus. A world revision of the genus Leymus is needed. In this paper we summarize experimental results, provide a key to sections, species and varieties, and list all the taxa we recognize in Leymus with their synonyms. This synopsis is a new taxonomic system to be used for the revision of Leymus. 展开更多
关键词 GENOME LEYMUS new taxonomic system section species varieties.
下载PDF
Fine mapping and transcriptome sequencing reveal candidate genes conferring all-stage resistance to stripe rust on chromosome arm 1AL in Chinese wheat landrace AS1676 被引量:3
6
作者 Xiu Yang Yunfeng Jiang +18 位作者 Xianghai Yu Haipeng Zhang Yuqi Wang Fangnian Guan Li Long Hao Li Wei Li Qiantao Jiang Jirui Wang Yuming Wei Jian Ma Houyang Kang Pengfei Qi Qiang Xu Meng Deng Yazhou Zhang Youliang Zheng Yonghong Zhou Guoyue Chen 《The Crop Journal》 SCIE CSCD 2023年第5期1501-1511,共11页
Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathoge... Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding. 展开更多
关键词 Stripe rust All-stage resistance(ASR) BSE-Seq Transcriptome analyses Candidate genes
下载PDF
Genome-wide association and linkage mapping strategies reveal the genetic loci and candidate genes of important agronomic traits in Sichuan wheat 被引量:1
7
作者 ZHANG Zhi-peng LI Zhen +13 位作者 HE Fang Lü Ji-juan XIE Bin YI Xiao-yu LI Jia-min LI Jing SONG Jing-han PU Zhi-en MA Jian PENG Yuan-ying CHEN Guo-yue WEI Yu-ming ZHENG You-liang LI Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3380-3393,共14页
Increasing wheat yield is a long-term goal for wheat breeders around the world.Exploiting elite genetic resources and dissecting the genetic basis of important agronomic traits in wheat are the necessary methods for h... Increasing wheat yield is a long-term goal for wheat breeders around the world.Exploiting elite genetic resources and dissecting the genetic basis of important agronomic traits in wheat are the necessary methods for high-yield wheat breeding.This study evaluated nine crucial agronomic traits found in a natural population of 156 wheat varieties and77 landraces from Sichuan,China in seven environments over two years.The results of this investigation of agronomic traits showed that the landraces had more tillers and higher kernel numbers per spike (KNS),while the breeding varieties had higher thousand-kernel weight (TKW) and kernel weight per spike (KWS).The generalized heritability (H2) values of the nine agronomic traits varied from 0.74 to 0.95.Structure analysis suggested that the natural population could be divided into three groups using 43 198 single nucleotide polymorphism (SNP) markers from the wheat 55K SNP chip.A total of 67 quantitative trait loci (QTLs) were identified by the genome-wide association study (GWAS) analysis based on the Q+K method of a mixed linear model.Three important QTLs were analyzed in this study.Four haplotypes of QFTN.sicau-7BL.1 for fertile tillers number (FTN),three haplotypes of QKNS.sicau-1AL.2 for KNS,and four haplotypes of QTKW.sicau-3BS.1 for TKW were detected.FTN-Hap2,KNS-Hap1,and TKW-Hap2 were excellent haplotypes for each QTL based on the yield performance of 42 varieties in regional trials from 2002 to 2013.The varieties with all three haplotypes showed the highest yield compared to those with either two haplotypes or one haplotype.In addition,the KASP-AX-108866053 marker of QTL QKNS.sicau-1AL.2 was successfully distinguished between three haplotypes(or alleles) in 63 varieties based on the number of kernels per spike in regional trials between 2018 and 2021.These genetic loci and reliable makers can be applied in marker-assisted selection or map-based gene cloning for the genetic improvement of wheat yield. 展开更多
关键词 Sichuan wheat GWAS yield traits haplotype analysis KASP
下载PDF
Investigation of Aegilops umbellulata for stripe rust resistance,heading date,and the contents of iron,zinc,and gluten protein
8
作者 SONG Zhong-ping ZUO Yuan-yuan +5 位作者 XIANG Qin LI Wen-jia LI Jian LIU Gang DAI Shou-fen YAN Ze-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1258-1265,共8页
Aegilops umbellulata(UU)is a wheat wild relative that has potential use in the genetic improvement of wheat.In this study,46 Ae.umbellulata accessions were investigated for stripe rust resistance,heading date(HD),and ... Aegilops umbellulata(UU)is a wheat wild relative that has potential use in the genetic improvement of wheat.In this study,46 Ae.umbellulata accessions were investigated for stripe rust resistance,heading date(HD),and the contents of iron(Fe),zinc(Zn),and seed gluten proteins.Forty-two of the accessions were classified as resistant to stripe rust,while the other four accessions were classified as susceptible to stripe rust in four environments.The average HD of Ae.umbellulata was significantly longer than that of three common wheat cultivars(180.9 d vs.137.0 d),with the exception of PI226500(138.9 d).The Ae.umbellulata accessions also showed high variability in Fe(69.74-348.09 mg kg^(-1))and Zn(49.83-101.65 mg kg^(-1))contents.Three accessions(viz.,PI542362,PI542363,and PI554399)showed relatively higher Fe(230.96-348.09 mg kg^(-1))and Zn(92.46-101.65 mg kg^(-1))contents than the others.The Fe content of Ae.umbellulata was similar to those of Ae.comosa and Ae.markgrafii but higher than those of Ae.tauschii and common wheat.Aegilops umbellulata showed a higher Zn content than Ae.tauschii,Ae.comosa,and common wheat,but a lower content than Ae.markgrafii.Furthermore,Ae.umbellulata had the highest proportion of γ-gliadin among all the species investigated(Ae.umbellulata vs.other species=mean 72.11%vs.49.37%;range:55.33-86.99%vs.29.60-67.91%).These results demonstrated that Ae.umbellulata exhibits great diversity in the investigated traits,so it can provide a potential gene pool for the genetic improvement of these traits in wheat. 展开更多
关键词 Aegilops umbellulata stripe rust resistance heading date Fe and Zn gluten proteins genetic variation
下载PDF
Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in a wheat background
9
作者 XU Shi-rui JIANG Bo +7 位作者 HAN Hai-ming JI Xia-jie ZHANG Jin-peng ZHOU Sheng-hui YANG Xin-ming LI Xiu-quan LI Li-hui LIU Wei-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期52-62,共11页
Agropyron cristatum(2n=4x=28,PPPP)is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.Wheat–A.cristatum 2P alien translocation lines exhibit... Agropyron cristatum(2n=4x=28,PPPP)is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.Wheat–A.cristatum 2P alien translocation lines exhibit many desirable traits,such as small flag leaves,a high spikelet number and density,and a compact plant type.An agronomic trait evaluation and a genetic analysis were carried out on translocation lines and backcross populations of these lines carrying different translocation fragments.The results showed that a translocation fragment from 2PT-3(2PL)reduced the length of the flag leaves,while translocation fragments from 2PT-3(2PL)and 2PT-5(2PL(0.60–1.00))reduced the width of the flag leaves.A translocation fragment from 2PT-13(2PS(0.18–0.36))increased the length and area of the flag leaves.Translocation fragments from 2PT-3(2PL)and 2PT-8(2PL(0.86–1.00))increased the density of spikelets.Translocation fragments from 2PT-7(2PL(0.00–0.09)),2PT-8(2PL(0.86–1.00)),2PT-10(2PS),and 2PT-13(2PS(0.18–0.36))reduced plant height.This study provides a scientific basis for the effective utilization of wheat–A.cristatum translocation lines. 展开更多
关键词 wheat-A.cristatum 2P chromosome translocation lines flag leaf spikelet density genetic effects
下载PDF
Development and characterization of wheat–Aegilops kotschyi 1U^(k)(1A)substitution line with positive dough quality parameters
10
作者 JIANG Yun WANG De-li +2 位作者 HAO Ming ZHANG Jie LIU Deng-cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期999-1008,共10页
Exploring novel high molecular weight glutenin subunits(HMW-GSs)from wild related species is a strategy to improve wheat processing quality.The objective of the present investigation was to identify the chromosomes of... Exploring novel high molecular weight glutenin subunits(HMW-GSs)from wild related species is a strategy to improve wheat processing quality.The objective of the present investigation was to identify the chromosomes of the wheatalien introgression line N124,derived from the hybridization between Triticum aestivum with Aegilops kotschyi,and characterize the effects on quality-related traits.Fluorescence in situ hybridization karyotypes showed that N124 is a disomic 1U^(k)(1A)substitution line.Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE)and reversedphase high-performance liquid chromatography verified N124 expressed two HMW-GSs of the Ae.kotschyi parent.PacBio RNA sequencing and phylogenetic analysis confirmed that the two HMW-GSs were U^(k)x and U^(k)y.Compared to the wheat parent,the substitution line had no obvious agronomic defects except fewer grains per spike but improved several major quality parameters.It can be served as a donor or bridge material for wheat quality improvement. 展开更多
关键词 Aegilops kotschyi common wheat 1Uk(1A)substitution line HMW-GS processing quality
下载PDF
Effect of high-molecular-weight glutenin subunit Dy10 on wheat dough properties and end-use quality
11
作者 WANG Yan GUO Zhen-ru +16 位作者 CHEN Qing LI Yang ZHAO Kan WAN Yong-fang Malcolm JHAWKESFORD JIANG Yun-feng KONG Li PU Zhi-en DENG Mei JIANG Qian-tao LAN Xiu-jin WANG Ji-rui CHEN Guo-yue MA Jian ZHENG You-liang WEI Yu-ming QI Peng-fei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1609-1617,共9页
High-molecular-weight glutenin subunits(HMW-GSs) are the most critical grain storage proteins that determine the unique processing qualities of wheat. Although it is a part of the superior HMW-GS pair(Dx5+Dy10), the c... High-molecular-weight glutenin subunits(HMW-GSs) are the most critical grain storage proteins that determine the unique processing qualities of wheat. Although it is a part of the superior HMW-GS pair(Dx5+Dy10), the contribution of the Dy10 subunit to wheat processing quality remains unclear. In this study, we elucidated the effect of Dy10 on wheat processing quality by generating and analyzing a deletion mutant(with the Dy10-null allele), and by elucidating the changes to wheat flour following the incorporation of purified Dy10. The Dy10-null allele was transcribed normally,but the Dy10 subunit was lacking. These findings implied that the Dy10-null allele reduced the glutenin:gliadin ratio and negatively affected dough strength(i.e., Zeleny sedimentation value, gluten index, and dough development and stability times) and the bread-making quality;however, it positively affected the biscuit-making quality. The incorporation of various amounts of purified Dy10 into wheat flour had a detrimental effect on biscuit-making quality. The results of this study demonstrate that the Dy10 subunit is essential for maintaining wheat dough strength. Furthermore, the Dy10-null allele may be exploited by soft wheat breeding programs. 展开更多
关键词 HMW-GS nonsense mutation Dy10-null allele end-use quality
下载PDF
miR-27b-5p regulates chicken liver disease via targeting IRS2 to suppress the PI3K/AKT signal pathway
12
作者 ZHAO Jing WU Ya-mei +10 位作者 ZHANG Yao TANG Shu-yue HAN Shun-shun CUI Can TAN Bo YU Jie KANG Hou-yang CHEN Guang-deng MA Meng-gen ZHU Qing YIN Hua-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3500-3516,共17页
The liver is a vital organ in chickens that performs a number of crucial physiological functions, including the storage of hepatic glycogen, protein synthesis, detoxification, and deoxidation. The growth and metabolis... The liver is a vital organ in chickens that performs a number of crucial physiological functions, including the storage of hepatic glycogen, protein synthesis, detoxification, and deoxidation. The growth and metabolism of the liver are complex processes influenced by factors such as environment, diet, and genetics. MicroRNAs(miRNAs), as posttranscriptional regulatory molecules, play a role in various biological processes. There is growing evidence that miR-27b-5p plays a key role in the regulation of liver development and metabolism in various species. However, its role in chicken livers has yet to be determined. In our experiment, we found that chickens with fatty livers had significantly higher levels of serum triglyceride(TG) and total cholesterol(TC) compared to the normal chickens, while the control group had significantly higher levels of very low-density lipoprotein(VLDL) and serum hormones. Further research showed that the mRNA of miR-27b-5p was highly expressed in fatty livers. By exploring the function of miR-27b-5p in chicken livers, we discovered that it promotes lipogenesis, oxidative stress, and inflammatory responses, leading to hepatocyte apoptosis. Our study also established the mechanism by which miR-27b-5p interacts with its target gene, and found that miR-27b-5p targets insulin receptor substrate 2(IRS2) and modulates the PI3K/AKT signaling pathway. Additionally, our investigation of IRS2 in chicken hepatocytes revealed that knocking down IRS2 has the same effects as overexpressing miR-27b-5p. In conclusion, our study revealed that miR-27b-5p directly binds to IRS2, inhibiting the PI3K/AKT signaling pathway and causing steatosis, oxidative stress, inflammation, and apoptosis in chicken liver. 展开更多
关键词 miR-27b-5p IRs2 LIPOGENESIS oxidative stress INFLAMMATION apoptosis
下载PDF
The KL system in wheat permits homoeologous crossing over between closely related chromosomes
13
作者 Chaolan Fan Jiangtao Luo +13 位作者 Jiaojiao Sun Hong Chen Liqiong Li Lanyue Zhang Xue Chen Yazhou Li Shunzong Ning Zhongwei Yuan Bo Jiang Lianquan Zhang Xuejiao Chen Adam J.Lukaszewski Dengcai Liu Ming Hao 《The Crop Journal》 SCIE CSCD 2023年第3期808-816,共9页
The Chinese wheat landrace Kaixianluohanmai(KL)expresses the ph-like phenotype.A major QTL,QPh.sicau-3A(syn.phKL),responsible for this effect has been mapped to chromosome arm 3AL.This study presents some characterist... The Chinese wheat landrace Kaixianluohanmai(KL)expresses the ph-like phenotype.A major QTL,QPh.sicau-3A(syn.phKL),responsible for this effect has been mapped to chromosome arm 3AL.This study presents some characteristics of homoeologous pairing and recombination induced by phKL.In KL haploids,the level of homoeologous pairing was elevated relative to Ph1 Chinese Spring(CS)haploids.There was a clear preference for A–D pairing and less frequent for A–B and B–D,reflecting the higher levels of affinity between genomes A and D in wheat.The characteristics of pairing were affected by temperature and magnesium ion supplementation.The suitability of phKL for chromosome engineering was tested on three pairs of homoeologues:2Sv-2B,2Sv-2D,and 2RL-2BL.The recombination rates were 1.68%,0.17%,and 0%,respectively.The phKL locus in KL induced a moderate level of homoeologous chromosome pairing and recombination when the Ph1 locus of wheat was present,both in wheat haploids and hexaploids.The Ph1-imposed criteria for chromosome pairing and crossing over were relaxed to some degree,permitting homoeologous crossing over but only between closely related chromosomes;there was no crossing over between more differentiated chromosomes.Therefore,the phKL system(QPh.sicau-3A)can be a useful tool in chromosome engineering of wheat to transfer genes from closely related species with the benefit of reduced genomic chaos generated by the ph1b mutation. 展开更多
关键词 ph-like gene phKL Homoeologous recombination Homoeology
下载PDF
High-resolution genetic mapping and identification of candidate genes for the wheat stem rust resistance gene Sr8155B1
14
作者 Jian Wang Hongyu Li +13 位作者 Tao Shen Shikai Lyu Shams ur Rehman Hongna Li Guiping Wang Binyang Xu Qing Wang Wanyi Hu Kairong Li Shengsheng Bai Jian Ma Haitao Yu Matthew N.Rouse Shisheng Chen 《The Crop Journal》 SCIE CSCD 2023年第6期1852-1861,共10页
Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is... Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is the best strategy for controlling the disease.In this study,we performed fine mapping and characterization of the all-stage stem rust resistance(Sr)gene Sr8155B1 from the durum wheat line 8155-B1.In seedling tests of biparental populations,Sr8155B1 was effective against six Chinese Pgt races tested.In a segregating population of 5060 gametes,Sr8155B1 was mapped to a 0.06-cM region flanked by markers Pku2772 and Pku43365,corresponding to 1.5-and 2.7-Mb regions in the Svevo and Chinese Spring reference genomes.Both regions include several typical nucleotide-binding leucine-rich repeat(NLR)and protein kinase genes that represent candidate genes.Among them,three NLR genes and three receptor-like protein kinases were highly polymorphic between the parental lines and their transcripts were upregulated in the homozygous resistant line TdR2 relative to its susceptible sister line TdS4.Four markers(Pku2772,Pku43365,Pku2950,and Pku3721)developed in this study,together with seedling resistance responses,correctly predicted Sr8155B1 absence or presence in 78 tetraploid wheat genotypes tested.The presence of Sr8155B1 in tetraploid wheat accessions CItr 14916,PI 197492,and PI 197493 was confirmed by mapping in three F_(2)populations.The genetic map and linked markers developed in this study may accelerate the deployment of Sr8155B1-mediated resistance in wheat breeding programs. 展开更多
关键词 Durum wheat Stem rust Resistance gene Sr8155B1 CC-NBS-LRR
下载PDF
QTLs for Waterlogging Tolerance at Germination and Seedling Stages in Population of Recombinant Inbred Lines Derived from a Cross Between Synthetic and Cultivated Wheat Genotypes 被引量:9
15
作者 YU Ma MAO Shuang-lin +5 位作者 CHEN Guo-yue LIU Ya-xi LI Wei WEI Yu-ming LIU Chun-ji ZHENG You-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第1期31-39,共9页
Waterlogging is a widespread limiting factor for wheat production throughout the world. To identify quantitative trait loci (QTLs) associated with waterlogging tolerance at early stages of growth, survival rate (SR... Waterlogging is a widespread limiting factor for wheat production throughout the world. To identify quantitative trait loci (QTLs) associated with waterlogging tolerance at early stages of growth, survival rate (SR), germination rate index (GRI), leaf chlorophyll content index (CCI), root length index (RLI), plant height index (PHI), root dry weight index (RDWI), shoot dry weight index (SDWI), and total dry weight index (DWI) were assessed using the International Triticeae Mapping Initiative (ITMI) population W7984/Opata85. Significant and positive correlations were detected for all traits in this population except RLI. A total of 32 QTLs were associated with waterlogging tolerance on all chromosomes except 3A, 3D, 4B, 5A, 5D, 6A, and 6D. Some of the QTLs explained large proportions of the phenotypic variance. One of these is the QTL for GRI on 7A, which explained 23.92% of the phenotypic variation. Of them, 22 alleles from the synthetic hexaploid wheat W7984 contributed positively. These results suggested that synthetic hexaploid wheat W7984 is an important genetic resource for waterlogging tolerance in wheat. These alleles conferring waterlogging tolerance at early stages of growth in wheat could be utilized in wheat breeding for improving waterlogging tolerance. 展开更多
关键词 WHEAT waterlogging tolerance QTL germination and seedling stages
下载PDF
Evaluation on Chinese Bread Wheat Landraces for Low pH and Aluminum Tolerance Using Hydroponic Screening 被引量:7
16
作者 DAI Shou-fen YAN Ze-hong LIU Deng-cai ZHANG Lian-quan WEI Yu-ming ZHENG You-liang 《Agricultural Sciences in China》 CAS CSCD 2009年第3期285-292,共8页
Aluminum (Al) toxicity often takes place in acidic soils with a pH of 5.5 or lower. Breeding and cultivation of Al tolerance wheat can partially protect wheat escaping from Al toxicity. The scarcity of the tolerant ... Aluminum (Al) toxicity often takes place in acidic soils with a pH of 5.5 or lower. Breeding and cultivation of Al tolerance wheat can partially protect wheat escaping from Al toxicity. The scarcity of the tolerant sources impedes the wheat breeding. In order to find new Al tolerance sources, we screened 173 bread wheat landraces from Tibet of China using hydroponic screening. It was indicated that: (1) There were diversities on the root regenerate length (RRL). The RRL of a large of landraces were longer than 7.00 cm in pH 7 (58.38%) and pH 4.5 (66.47%), but shorter than 5.00 cm in pH 4.5 +50μM Al^3+ (80.93%). The low pH showed either promotion or restraining effects depend on landraces, but Al toxicity under low pH only showed restraining effects on the root elongation. (2) There were also diversities on root tolerance index of low pH (RTI 1) or root aluminum tolerance index (RTI2) among cultivars. The RTI1 varied from a narrow range but with relatively high value (0.8722-1.2953) in comparison with that of RTI2 (0.3829-1.0058), and the RTI1 of approximately 60% landraces was higher than 1.0000, the RTI2 of only 19.07% landraces was higher than 0.7000, suggesting that Al toxicity acted as an important factor for the reduction of the root elongation under acidic soils. (3) The RTI 1 of many wheats was higher than 1.0000, and As2256 and As2295 were the most tolerant for low pH, with RTI1 1.2953 and 1.2925, respectively. (4) Based on RTI2, seven wheats showed similar or higher tolerance to Al toxicity than Chinese Spring (CS), a known tolerance wheat. Much better tolerance existed in landraces of As1543 and As1242, which can be used as the new parents for Al tolerant breeding. 展开更多
关键词 bread wheat root regenerate length tolerance index aluminum tolerance hydroponic screening
下载PDF
Wheat breeding in the hometown of Chinese Spring 被引量:4
17
作者 Dengcai Liu Lianquan Zhang +8 位作者 Ming Hao Shunzong Ning Zhongwei Yuan Shoufen Dai Lin Huang Bihua Wu Zehong Yan Xiujin Lan Youliang Zheng 《The Crop Journal》 SCIE CAS CSCD 2018年第1期82-90,共9页
The common wheat landrace Chinese Spring(CS) was made famous by the work of Ernie Sears, a great cytogenetist, who developed a number of CS-based aneuploid series that were used to identify individual wheat chromosome... The common wheat landrace Chinese Spring(CS) was made famous by the work of Ernie Sears, a great cytogenetist, who developed a number of CS-based aneuploid series that were used to identify individual wheat chromosomes. Based on this, a standard karyotype and nomenclature system was developed for wheat chromosomes that allowed wheat researchers to analyze and manipulate the wheat genome with unprecedented precision and efficiency. Nevertheless, not much is known about the utilization of CS at its hometown, Chengdu in Sichuan province, during early wheat breeding activity. In this review, we follow the speculation that CS is a selection from the Cheng-du-guang-tou(CDGT) landrace. We provide a description of how CDGT became a founder landrace for wheat breeding activities in early times. We show that CDGT-derived varieties were reinforced genetically by crosses to six more exotic parents. These varieties remained the major elite cultivar for several decades. Later, synthetic hexaploid wheats were introduced into the breeding program, firstly using those from CIMMYT and later using materials produced with local tetraploid wheat and goat grass. Finally, we discuss the strategies and future directions to improve wheat yield and resistance through an expanded genetic basis,especially by recapturing lost genetic variations from landraces and related wild species, a process that may set an example for wheat breeders in China and elsewhere. 展开更多
关键词 INTROGRESSION Multiparent advanced generation inter-cross SYNTHETIC HEXAPLOID WHEAT Unreduced GAMETES
下载PDF
Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii 被引量:5
18
作者 Lianquan Zhang Qijiao Chen +3 位作者 Zhongwei Yuan Zhiguo Xiang Youliang Zheng Dengcai Liu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第10期617-623,共7页
Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedse... Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F1 hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F1 hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes. 展开更多
关键词 Aegilops tauschii ANEUPLOID durum wheat female gametes meiosis restitution unreduced gametes
下载PDF
QTL Mapping for Important Agronomic Traits in Synthetic Hexaploid Wheat Derived from Aegiliops tauschii ssp. tauschii 被引量:6
19
作者 YU Ma CHEN Guo-yue +9 位作者 ZHANG Lian-quan LIU Ya-xi LIU Deng-cai WANG Ji-rui PU Zhi-en ZHANG Li LAN Xiu-jin WEI Yu-ming LIU Chun-ji ZHENG You-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第9期1835-1844,共10页
Aegiliops tauschii is classified into two subspecies: Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata. Novel genetic variations exist in Ae. tauschii ssp. tauschii that can be utilized in wheat improveme... Aegiliops tauschii is classified into two subspecies: Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata. Novel genetic variations exist in Ae. tauschii ssp. tauschii that can be utilized in wheat improvement. We synthesized a hexaploid wheat genotype(SHW-L1) by crossing an Ae. tauschii ssp. tauschii accession(AS60) with a tetraploid wheat genotype(AS2255). A population consisting of 171 F8 recombinant inbred lines was developed from SHW-L1 and Chuanmai 32 to identify QTLs associated with agronomic traits. A new genetic map with high density was constructed and used to detect the QTLs for heading date, kernel width, spike length, spikelet number, and thousand kernel weight. A total of 30 putative QTLs were identified for five investigated traits. Thirteen QTLs were located on D genomes of SHW-L1, six of them showed positive effect on agronomic traits. Chromosome region flanked by wPt-6133–wPt-8134 on 2D carried five environment-independent QTLs. Each QTL accounted for more than 10% phenotypic variance. These QTLs were highly consistent across environments and should be used in wheat breeding. 展开更多
关键词 genetic map QTL DART agronomic traits synthetic wheat Aegilops tauschii ssp.tauschii
下载PDF
Isolation and Analysis of α-Gliadin Gene Coding Sequences from Triticum durum 被引量:7
20
作者 WANG Han-yan WEI Yu-ming +1 位作者 ZE Hong-yan ZHENG You-liang 《Agricultural Sciences in China》 CAS CSCD 2007年第1期25-32,共8页
Three coding sequences of gliadins genes, designed as Gli2_Dul, Gli2_Du2 and Gli2_Du3, were isolated from the genomic DNA of Triticum durum accessions CItr5083. Gli2_Dul and Gli2_Du2 contain 945 and 864 bp, encoding t... Three coding sequences of gliadins genes, designed as Gli2_Dul, Gli2_Du2 and Gli2_Du3, were isolated from the genomic DNA of Triticum durum accessions CItr5083. Gli2_Dul and Gli2_Du2 contain 945 and 864 bp, encoding the mature proteins with 314 and 287 amino acid residues, respectively. Gli2_Du3 is recognized as a pseudogene due to the stop codon occurring in the coding region. The pseudogenes, commonly occurring in gliadins family, are attributed to the single base change C→T. The amino acid sequences deduced from these gene sequences were characterized with the typical structure of α-gliadin proteins, including the toxic sequences (PSQQQP). The peptide fraction PF(Y)PP(Q)is thought to be an extra unit of repetitive domain, slightly diverging from the previous report. Six cysteine residues were observed within two unique domains. Phylogenetic analysis showed Gli2_Du2 and Gli2_Du3 were closely related to the genes on chromosome 6A, whereas Gli2_Dul seems to be more homologous with the genes on chromosome 6B. 展开更多
关键词 durum wheat α-gliadin gene clone sequence analysis
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部