期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Validation of a Characteristics Dimensions for Transfers during Convective Drying of Sweet Potato Cubic, Cylindrical and Spherical Shapes
1
作者 Ouoba Kondia Honore Ganame Abdou-Salam +2 位作者 Ibrango Abdoul Salam Bama Désiré Zougmore François 《Open Journal of Applied Sciences》 2023年第10期1714-1722,共9页
This present work solves the problem of initial shape influence on transfer during convective drying. A characteristic dimension is found for the cubic, cylindrical and spherical-shaped samples of the sweet potato. Th... This present work solves the problem of initial shape influence on transfer during convective drying. A characteristic dimension is found for the cubic, cylindrical and spherical-shaped samples of the sweet potato. This characteristic dimension corresponds to the diameter D for the sphere, to the edge a for the cube and the diameter = height D = H for the cylinder. Unlike the sphere where this characteristic dimension is perfect, the cubic and cylindrical shapes have space factors which are, among other things, angles and borders. By fixing the same characteristic dimensions, we end up with overlapping curves, showing identical and uniform transfers. 展开更多
关键词 DRYING Initial Size Characteristic Dimension FORMS
下载PDF
Rainfall and Temperature Variations over Burkina Faso: Possible Influence of Geomagnetic Activity, Solar Activity and Associated Energies from 1975 to 2020
2
作者 Yacouba Sawadogo Somaïla Koala Jean Louis Zerbo 《Atmospheric and Climate Sciences》 CAS 2022年第4期603-612,共10页
This study investigates climatic parameters (rainfall, and temperature) over Burkina Faso and the possible role of solar activity and its induced energies. Through morphological investigations, we analyzed solar activ... This study investigates climatic parameters (rainfall, and temperature) over Burkina Faso and the possible role of solar activity and its induced energies. Through morphological investigations, we analyzed solar activity indices (sunspot number, IMF, PC index, Cosmic rays) over the last three solar cycles (1975-2020). Results about interplanetary heating show that joule heating is well correlated with the dynamic pressure of the solar plasma. Climate parameters (rainfall, Temperature) variabilities are modulated by disturbances in solar activity: 1) quiet solar characterized by a drop in solar plasma’s parameters is associated with important cloud cover and consequently bring important rainfall which chills terrestrial atmosphere, 2) active solar characterized by important input energy is associated with weak incident cosmic ray consequently with low cloudiness which brings warming. Thus, the possible natural link can be suggested between solar activity and climatic parameters even if it is not the only factor of global warming. 展开更多
关键词 Temperature RAINFALL Solar Activity Geomagnetic Activity CLIMATE Burkina Faso
下载PDF
Seasonal Variations of Solar Wind Parameters during Solar Cycles 23 and 24
3
作者 Somaïla Koala Yacouba Sawadogo Jean Louis Zerbo 《Open Journal of Applied Sciences》 CAS 2022年第9期1527-1546,共20页
In this paper, we analyzed diurnal and annual seasonal variations of solar wind parameters such as interplanetary magnetic field (IMF), proton density (N), solar wind speed (V) and solar wind dynamic pressure (Pdym), ... In this paper, we analyzed diurnal and annual seasonal variations of solar wind parameters such as interplanetary magnetic field (IMF), proton density (N), solar wind speed (V) and solar wind dynamic pressure (Pdym), during the solar cycles 23 and 24. Our study shows that strong geomagnetic disturbances are observed at the equinoxes during both solar cycles. The highest proton densities are observed at solstices during both solar cycles. The greatest solar wind speeds are observed at the equinoxes of solar cycle 23 and at the solstices of solar cycle 24. The highest solar wind dynamic pressures are observed at the solstices of both solar cycles. We also observed an asymmetrical evolution of the seasonal diurnal values of the solar wind parameters during the two cycles, except for the proton density. Our investigations also highlight the fact that the seasonal diurnal values of the solar wind parameters are significant at solar cycle 23 compared to solar cycle 24 characterized by a global weak in solar plasma conditions since the deep minimum that followed the solar cycle 23 leading to an absence of a persistent polar coronal hole. The drop observed in polar field and solar winds parameters during solar cycle 24 is reproduced on seasons (solstices and equinoxes). The solar cycle 23 and 24 appear to be two magnetically opposite solar cycles regardless the time scales. 展开更多
关键词 DIURNAL SEASONAL Solar Winds PARAMETERS VARIATION Solar Cycle
下载PDF
Physical Transformations of Agri-Food Products during Their Convective Drying: Characterization of the Contraction and Isotropicity of Okra
4
作者 Kondia Honoré Ouoba Abdou-Salam Ganame +2 位作者 Désiré Bama Abdoul Salam Ibrango Salifou Ouedraogo 《Journal of Minerals and Materials Characterization and Engineering》 2023年第6期249-259,共11页
The physical transformations in terms of contraction of okra dimensions during convective drying were examined. During drying, the lateral and longitudinal dimensions of okra decrease over time. The lateral dimensions... The physical transformations in terms of contraction of okra dimensions during convective drying were examined. During drying, the lateral and longitudinal dimensions of okra decrease over time. The lateral dimensions go from their initial value to around 53%, 65% and 66% of this value after 530 min. The length of the two samples used goes from 8.65 and 9.02 cm to 6.79 and 7.52 cm after 14,300 min, i.e. a variation of 78.50% and 83.37%. All the two directions give variations almost linear depending on the water content. These linear contractions result in a volume contraction of the okra. It considerably decreases in volume during the drying process. The volume goes from 831.32 cm<sup>3</sup> to 367.57 cm<sup>3</sup> in min, a variation of 44.22%. The isotropic index reveals that okra does not behave the same in the lateral and longitudinal directions. It contracts its diameter more than its length. 展开更多
关键词 Physical Transformations CONTRACTION Isotropicity OKRA
下载PDF
Evaluation of Water Losses by Evaporation in the Nakanbe Basin
5
作者 Bayala Alfred Kabre Sayouba +5 位作者 Yonli Hamma Fabien Chesneau Xavier Thierry Sikoudouin Maurice Ky Zeghmati Belkacem Kieno P. Florent Kam Sié 《Atmospheric and Climate Sciences》 2024年第1期29-41,共13页
A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e... A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020. 展开更多
关键词 Numerical Study EVAPORATION Meteorological Data Natural Convection BASINS DAMS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部