期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ensemble Filter-Wrapper Text Feature Selection Methods for Text Classification
1
作者 Oluwaseun Peter Ige Keng Hoon Gan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1847-1865,共19页
Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality.This involves elim... Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality.This involves eliminating irrelevant,redundant,and noisy features to streamline the classification process.Various methods,from single feature selection techniques to ensemble filter-wrapper methods,have been used in the literature.Metaheuristic algorithms have become popular due to their ability to handle optimization complexity and the continuous influx of text documents.Feature selection is inherently multi-objective,balancing the enhancement of feature relevance,accuracy,and the reduction of redundant features.This research presents a two-fold objective for feature selection.The first objective is to identify the top-ranked features using an ensemble of three multi-univariate filter methods:Information Gain(Infogain),Chi-Square(Chi^(2)),and Analysis of Variance(ANOVA).This aims to maximize feature relevance while minimizing redundancy.The second objective involves reducing the number of selected features and increasing accuracy through a hybrid approach combining Artificial Bee Colony(ABC)and Genetic Algorithms(GA).This hybrid method operates in a wrapper framework to identify the most informative subset of text features.Support Vector Machine(SVM)was employed as the performance evaluator for the proposed model,tested on two high-dimensional multiclass datasets.The experimental results demonstrated that the ensemble filter combined with the ABC+GA hybrid approach is a promising solution for text feature selection,offering superior performance compared to other existing feature selection algorithms. 展开更多
关键词 Metaheuristic algorithms text classification multi-univariate filter feature selection ensemble filter-wrapper techniques
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部