Modeling of ancillary services market can be described as institutional arrangements for establishing ancillary services management in deregulated electricity market. Models of the national ancillary services markets ...Modeling of ancillary services market can be described as institutional arrangements for establishing ancillary services management in deregulated electricity market. Models of the national ancillary services markets are market models which offer transmission system operator efficient procurement of ancillary services, reducing the system management risk, more competitive electricity market, better utilization of production facilities and complete deregulation of electricity markets. This paper deals with current mode of ancillary services market and potential market development in Croatia. Described models are used for establishing market of ancillary services which should occur in parallel with the electricity market.展开更多
Deep geothermal energy presents large untapped renewable energy potential could significantly contribute to global energy needs. However, developing geothermal projects involves uncertainties regarding adequate geothe...Deep geothermal energy presents large untapped renewable energy potential could significantly contribute to global energy needs. However, developing geothermal projects involves uncertainties regarding adequate geothermal brine extraction and huge costs related to preparation phases and consequently drilling and stimulation activities. Therefore, evaluating utilization alternatives of such projects is a complex decision-making problem effectively addressed using multi-criteria decision-making (MCDM) methods. This study introduces the MCDM method utilizing analytic hierarchy process (AHP) and weighted decision matrix (WDM) to assess different utilization alternatives (electricity generation, direct heat use and cogeneration). The AHP method determines the weight of each criterion and sub-criterion, while the WDM calculates the final project grade. Five criteria groups - technological, geological, economic, societal and environmental – comprising twenty-eight influencing factors were selected and used for the assessment of investment in Enhanced Geothermal Systems (EGS) projects. The AHP-WDM method was used by 38 experts from six categories: industry, educational institution, research and technology organization (RTO), small- and medium-sized enterprises (SME), local community and other. These diverse expert inputs aimed to capture varying perspectives and knowledge influence investment decisions in geothermal energy. The results were analysed accordingly. The results underscore the importance of incorporating different viewpoints to develop robust, credible, and effective investment strategies for EGS projects. Therefore, this method will contribute to more efficient EGS project development, enabling thus a greater penetration of the EGS into the market. Additionally, the proposed AHP-WDM method was implemented for a case study examining two locations. Locations were assessed and compared on scenario-based evaluation. The results confirmed the method's adequacy for assessing various end uses and comparing project feasibility across different locations.展开更多
The paper analyses the coordinated hydro-wind power generation considering joint bidding in the electricity market.The impact of mutual bidding strategies on market prices,traded volumes,and revenues has been quantifi...The paper analyses the coordinated hydro-wind power generation considering joint bidding in the electricity market.The impact of mutual bidding strategies on market prices,traded volumes,and revenues has been quantified.The coordination assumes that hydro power generation is scheduled mainly to compensate the differences between actual and planned wind power outputs.The potential of this coordination in achieving and utilizing of market power is explored.The market equilibrium of asymmetric generation companies is analyzed using a game theory approach.The assumed market situation is imperfect competition and non-cooperative game.A nu-merical approximation of the asymmetric supply function equilibrium is used to model this game.An introduced novelty is the application of an asymmetric supply function equilibrium approximation for coordinated hydro-wind power generation.The model is tested using real input data from the Croatian power system.展开更多
文摘Modeling of ancillary services market can be described as institutional arrangements for establishing ancillary services management in deregulated electricity market. Models of the national ancillary services markets are market models which offer transmission system operator efficient procurement of ancillary services, reducing the system management risk, more competitive electricity market, better utilization of production facilities and complete deregulation of electricity markets. This paper deals with current mode of ancillary services market and potential market development in Croatia. Described models are used for establishing market of ancillary services which should occur in parallel with the electricity market.
基金funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 792037support from Department of Energy and Power Systems of University of Zagreb Faculty of Electrical Engineering and Computing.
文摘Deep geothermal energy presents large untapped renewable energy potential could significantly contribute to global energy needs. However, developing geothermal projects involves uncertainties regarding adequate geothermal brine extraction and huge costs related to preparation phases and consequently drilling and stimulation activities. Therefore, evaluating utilization alternatives of such projects is a complex decision-making problem effectively addressed using multi-criteria decision-making (MCDM) methods. This study introduces the MCDM method utilizing analytic hierarchy process (AHP) and weighted decision matrix (WDM) to assess different utilization alternatives (electricity generation, direct heat use and cogeneration). The AHP method determines the weight of each criterion and sub-criterion, while the WDM calculates the final project grade. Five criteria groups - technological, geological, economic, societal and environmental – comprising twenty-eight influencing factors were selected and used for the assessment of investment in Enhanced Geothermal Systems (EGS) projects. The AHP-WDM method was used by 38 experts from six categories: industry, educational institution, research and technology organization (RTO), small- and medium-sized enterprises (SME), local community and other. These diverse expert inputs aimed to capture varying perspectives and knowledge influence investment decisions in geothermal energy. The results were analysed accordingly. The results underscore the importance of incorporating different viewpoints to develop robust, credible, and effective investment strategies for EGS projects. Therefore, this method will contribute to more efficient EGS project development, enabling thus a greater penetration of the EGS into the market. Additionally, the proposed AHP-WDM method was implemented for a case study examining two locations. Locations were assessed and compared on scenario-based evaluation. The results confirmed the method's adequacy for assessing various end uses and comparing project feasibility across different locations.
基金the H2020 project CROSSBOW-CROSS Border management of variable renewable energies and storage units enabling a transnational wholesale market(No.773430)this work was supported in part by the Croatian Science Foundation under the project IMPACT-Implementation of Peer-to-Pecr Advanced Concept for Electricity Trading(No.UIP-2017-05-4068).
文摘The paper analyses the coordinated hydro-wind power generation considering joint bidding in the electricity market.The impact of mutual bidding strategies on market prices,traded volumes,and revenues has been quantified.The coordination assumes that hydro power generation is scheduled mainly to compensate the differences between actual and planned wind power outputs.The potential of this coordination in achieving and utilizing of market power is explored.The market equilibrium of asymmetric generation companies is analyzed using a game theory approach.The assumed market situation is imperfect competition and non-cooperative game.A nu-merical approximation of the asymmetric supply function equilibrium is used to model this game.An introduced novelty is the application of an asymmetric supply function equilibrium approximation for coordinated hydro-wind power generation.The model is tested using real input data from the Croatian power system.