期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Compressive property and energy absorption characteristic of interconnected porous Mg-Zn-Y alloys with adjusting Y addition
1
作者 J.A.Liu S.J.Liu +3 位作者 B.Wang W.B.Sun X.J.Liu Z.W.Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期171-185,共15页
In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics... In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics.Several characterization methods were then applied to identify the microstructure of the porous Mg-Zn-Y and describe the details of the second phase.Compressive tests were performed at room temperature(RT),200℃,and 300℃to study the impact of the Y addition and testing temperature on the compressive properties of the porous Mg-Zn-Y.The experimental results showed that a high Y content promotes a microstructure refinement and increases the volume fraction of the second phase.When the Y content increases,different Mg-Zn-Y ternary phases appear:I-phase(Mg_(3)Zn_(6)Y),W-phase(Mg_(3)Zn_(3)Y_(2)),and LPSO phase(Mg_(12)ZnY).When the Y content ranges between 0.4%and 6%,the compressive strength increases from 6.30MPa to 9.23 MPa,and the energy absorption capacity increases from 7.33 MJ/m^(3)to 10.97 MJ/m^(3)at RT,which is mainly attributed to the phase composition and volume fraction of the second phase.However,the average energy absorption efficiency is independent of the Y content.In addition,the compressive deformation behaviors of the porous Mg-Zn-Y are altered by the testing temperature.The compressive strength and energy absorption capacity of the porous Mg-Zn-Y decrease due to the softening effect of the high temperature on the struts.The deformation behaviors at different temperatures are finally observed to reflect the failure mechanisms of the struts. 展开更多
关键词 Porous magnesium Rare earth elements Microstructure Compressive behavior Energy absorption characteristic
下载PDF
Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries
2
作者 Zixin Guo Siguo Yang +5 位作者 Wenyang Zhao Shenghui Wang Jiong Liu Zhichao Ma Hongwei Zhao Luquan Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期497-506,I0014,共11页
The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between d... The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between depth of overdischarge and mechanical properties is still a significant challenge.Studying the correlation between depth of overdischarge and mechanical properties is of great significance to improving the energy density and the ability to resist abuse of the batteries.In this paper,the mechanical properties of the battery materials during the whole process of overdischarge from discharge to complete failure were studied.The effects of depth of overdischarge on the elastic modulus and hardness of the cathode of the battery,the tensile strength and the thermal shrinkage rate of the separator,and the performance of binder were investigated.The precipitation of Cu dendrites on the separator and cathode after dissolution of anode copper foil is a key factor affecting the performance of battery materials.The Cu dendrites attached to the cathode penetrate the separator,causing irreversible damage to the coating and base film of the separator,which leads to a sharp decline in the tensile strength,thermal shrinkage rate and other properties of the separator.In addition,the Cu dendrites wrapping the cathode active particles reduce the adhesion of the active particles binder.Meanwhile,the active particles are damaged,resulting in a significant decrease in the elastic modulus and hardness of the cathode. 展开更多
关键词 Overdischarge Cu dendrites Mechanical properties NANOINDENTATION Micron scratch
下载PDF
Jumbo Bionic Trabecular Metal Acetabular Cups Improve Cup Stability During Acetabular Bone Defect Reconstruction:A Finite Element Analysis Study
3
作者 Jianlin Xiao Haowen Xue +5 位作者 Zhihui Qian Shenghao Xu Xianyue Shen Zhuo Zhang Lei Ren Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2814-2825,共12页
The biomechanical effects of acetabular revision with jumbo cups are unclear.This study aimed to compare the biomechanical effects of bionic trabecular metal vs.titanium jumbo cups for the revision of acetabular bone ... The biomechanical effects of acetabular revision with jumbo cups are unclear.This study aimed to compare the biomechanical effects of bionic trabecular metal vs.titanium jumbo cups for the revision of acetabular bone defects.We designed and reconstructed American Academy of Orthopaedic Surgeons(AAOS)type I–III acetabular bone defect models using computed tomography scans of a man without acetabular bone defects.The implantation of titanium and trabecular metal jumbo cups was simulated.Stress distribution and relative micromotion between the cup and host bone were assessed using finite element analysis.Contact stress on the screws fixing the cups was also analyzed.The contact stress analysis showed that the peak contact stress between the titanium jumbo cup and the host bone was 21.7,20.1,and 23.8 MPa in the AAOS I–III models,respectively;the corresponding values for bionic tantalum jumbo cups decreased to 4.7,6.7,and 11.1 MPa.Analysis of the relative micromotion showed that the peak relative micromotion between the host bone and the titanium metal cup was 10.2,9.1,and 11.5μm in the AAOS I–III models,respectively;the corresponding values for bionic trabecular metal cups were 17.2,18.2,and 31.3μm.The peak contact stress on the screws was similar for the 2 cup types,and was concentrated on the screw rods.Hence,acetabular reconstruction with jumbo cups is biomechanically feasible.We recommend trabecular metal cups due to their superior stress distribution and higher relative micromotion,which is within the threshold for adequate bone ingrowth. 展开更多
关键词 Acetabular bone defect Finite element analysis Trabecular metal Jumbo cup
下载PDF
Antifouling Technology Trends in Marine Environmental Protection 被引量:3
4
作者 Limei Tian Yue Yin +1 位作者 Wei Bing E Jin 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第2期239-263,共25页
Marine fouling is a worldwide problem,which is harmful to the global marine ecological environment and economic benefits.The traditional antifouling strategy usually uses toxic antifouling agents,which gradually expos... Marine fouling is a worldwide problem,which is harmful to the global marine ecological environment and economic benefits.The traditional antifouling strategy usually uses toxic antifouling agents,which gradually exposes a serious environmental problem.Therefore,green,long-term,broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers.In recent years,many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials.In this review,contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies(2000-2020).Non-bionic antifouling technologies mainly include protein resistant polymers,antifoulant releasing coatings,foul release coatings,conductive antifouling coatings and photodynamic antifouling technology.Bionic antifouling technologies mainly include the simulated shark skin,whale skin,dolphin skin,coral tentacles,lotus leaves and other biology structures.Brief future research directions and challenges are also discussed in the end,and we expect that this review would boost the development of marine antifouling technologies. 展开更多
关键词 BIOFOULING antifouling technologies BIONIC non-bionic BIOFILM
下载PDF
Advances in controlled-release fertilizer encapsulated by organic-inorganic composite membranes
5
作者 Xueping Wang Yongyan Yang +5 位作者 Shuangling Zhong Qingye Meng Yiwei Li Jia Wang Yan Gao Xuejun Cui 《Particuology》 SCIE EI CAS CSCD 2024年第1期236-248,共13页
Heavy use of conventional fertilizers can lead to negative environmental concerns.Controlled-release fertilizers(CRFs)can effectively reduce the amounts of fertilizers used,improve the availability of fer-tilizers,and... Heavy use of conventional fertilizers can lead to negative environmental concerns.Controlled-release fertilizers(CRFs)can effectively reduce the amounts of fertilizers used,improve the availability of fer-tilizers,and which is conducive to the protection of the ecological environment and sustainable devel-opment of agriculture.Therefore,it is imperative to develop and use CRFs as an alternative to traditional fertilizers.This review aims to present the classification,raw material composition,benefits,release process,release mode,and manufacturing methods of fertilizers coated with organic-inorganic com-posite membranes(OICMs)in order to provide an overall update and summarize CRFs encapsulated by OICMs and provide an insight for future trends in the field of fertilizers.It is expected that utilizing CRFs encapsulated by OICMs and their characteristics for agricultural applications can provide innovative ideas and suggestions for developing novel CRFs suitable for modern and sustainable agriculture. 展开更多
关键词 Controlled-release fertilizers Organic-inorganic composite membranes Surface treatments
原文传递
Introducingωand O'nanodomains in Ti-6Al-4V:The mechanism of acceleratingα→βtransformation kinetics via electropulsing
6
作者 Yachong Zhou Xiaofeng Xu +4 位作者 Yang Zhao Xudong Yan Lai Wei Zhicheng Wu Chao Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第31期109-117,共9页
Conventional kinetics theory for diffusion-controlled phase transformation shows that the reverse transition should lag behind the temperature rise through rapid heating,i.e.,overheating is required.In this work,we fo... Conventional kinetics theory for diffusion-controlled phase transformation shows that the reverse transition should lag behind the temperature rise through rapid heating,i.e.,overheating is required.In this work,we found that theβ-transus temperature decreased by∼50°C during studying theα→βtransformation in Ti-6Al-4V alloy via electropulsing treatment(EPT).The calculation suggests that the acceleration of transformation kinetics cannot be fully explained by Joule heat and athermal effects of the electromigration effect and electron wind theory.The microstructural evolution during EPT was systematically investigated utilizing scanning electron microscope(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),transmission Kikuchi diffraction(TKD),and transmission electron micro-scope(TEM).Microscopic analysis shows that the nano-sizedωand O'phases formed in theβphase,which causes large numbers of lattice distortion regions.The defects are conducive to accelerating the bulk diffusion of alloying elements inβ.Moreover,the nanodomains limited the growth of martensite,therefore nanocrystalline martensite formed after quenching.These findings develop the understanding of the destructive effect of current on metallic crystal,which will help to guide microstructural regulation in titanium and other alloys. 展开更多
关键词 Titanium alloy Phase transformation kinetics ELECTROPULSING Nanodomain DIFFUSION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部