期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A complete reference genome for the soybean cv.Jack 被引量:2
1
作者 Yicheng Huang Dal-Hoe Koo +3 位作者 Yizhou Mao Eliot M.Herman Jianwei Zhang Monica A.Schmidt 《Plant Communications》 SCIE CSCD 2024年第2期19-22,共4页
Dear Editors,Soybeans are a global commodity for their edible protein and vegetable oil.The global population is predicted to be 9.7 billion by 2050(UN,2022),with a concomitant drastic increase in protein demand.With ... Dear Editors,Soybeans are a global commodity for their edible protein and vegetable oil.The global population is predicted to be 9.7 billion by 2050(UN,2022),with a concomitant drastic increase in protein demand.With already 2.4 billion people suffering from food insecurity(FAO et al.,2023),there is an urgent need to meet future production demands for plant-based proteins. 展开更多
关键词 COMMODITY SOYBEAN URGENT
原文传递
Global Wheat Head Detection 2021:An Improved Dataset for Benchmarking Wheat Head Detection Methods 被引量:8
2
作者 Etienne David Mario Serouart +34 位作者 Daniel Smith Simon Madec Kaaviya Velumani Shouyang Liu Xu Wang Francisco Pinto Shahameh Shafiee Izzat SATahir Hisashi Tsujimoto Shuhei Nasuda Bangyou Zheng Norbert Kirchgessner Helge Aasen Andreas Hund Pouria Sadhegi-Tehran Koichi Nagasawa Goro Ishikawa Sébastien Dandrifosse Alexis Carlier Benjamin Dumont Benoit Mercatoris Byron Evers Ken Kuroki Haozhou Wang Masanori Ishii Minhajul ABadhon Curtis Pozniak David Shaner LeBauer Morten Lillemo Jesse Poland Scott Chapman Benoit de Solan Frédéric Baret Ian Stavness Wei Guo 《Plant Phenomics》 SCIE 2021年第1期277-285,共9页
The Global Wheat Head Detection(GWHD)dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions.With an ass... The Global Wheat Head Detection(GWHD)dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions.With an associated competition hosted in Kaggle,GWHD_2020 has successfully attracted attention from both the computer vision and agricultural science communities.From this first experience,a few avenues for improvements have been identified regarding data size,head diversity,and label reliability.To address these issues,the 2020 dataset has been reexamined,relabeled,and complemented by adding 1722 images from 5 additional countries,allowing for 81,553 additional wheat heads.We now release in 2021 a new version of the Global Wheat Head Detection dataset,which is bigger,more diverse,and less noisy than the GWHD_2020 version. 展开更多
关键词 WHEAT adding RELEASE
原文传递
Two gap-free reference genomes and a global view of the centromere architecture in rice 被引量:30
3
作者 Jia-Ming Song Wen-Zhao Xie +22 位作者 Shuo Wang Yi-Xiong Guo Dal-Hoe Koo Dave Kudrna Chenbo Gong Yicheng Huang Jia-Wu Feng Wenhui Zhang Yong Zhou Andrea Zuccolo Evan Long Seunghee Lee Jayson Talag Run Zhou Xi-Tong Zhu Daojun Yuan Joshua Udall Weibo Xie Rod AWing Qifa Zhang Jesse Poland Jianwei Zhang Ling-Ling Chen 《Molecular Plant》 SCIE CAS CSCD 2021年第10期1757-1767,共11页
Rice(Oryza sativa),a major staple throughout the world and a model system for plant genomics and breeding,was the first crop genome sequenced almost two decades ago.However,reference genomes for all higher organisms t... Rice(Oryza sativa),a major staple throughout the world and a model system for plant genomics and breeding,was the first crop genome sequenced almost two decades ago.However,reference genomes for all higher organisms to date contain gaps and missing sequences.Here,we report the assembly and analysis of gap-free reference genome sequences for two elite O.sativa xian/indica rice varieties,Zhenshan 97 and Minghui 63,which are being used as a model system for studying heterosis and yield.Gap-free reference genomes provide the opportunity for a global view of the structure and function of centromeres.We show that all rice centromeric regions share conserved centromere-specific satellite motifs with different copy numbers and structures.In addition,the similarity of CentO repeats in the same chromosome is higher than across chromosomes,supporting a model of local expansion and homogenization.Both genomes have over 395 non-TE genes located in centromere regions,of which∼41%are actively transcribed.Two large structural variants at the end of chromosome 11 affect the copy number of resistance genes between the two genomes.The availability of the two gap-free genomes lays a solid foundation for further understanding genome structure and function in plants and breeding climate-resilient varieties. 展开更多
关键词 rice genome ZS97 MH63 hybrid rice centromere architecture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部