期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deployment optimization for target perpetual coverage in energy harvesting wireless sensor network 被引量:1
1
作者 Zhenkun Jin Yixuan Geng +4 位作者 Chenlu Zhu Yunzhi Xia Xianjun Deng Lingzhi Yi Xianlan Wang 《Digital Communications and Networks》 SCIE CSCD 2024年第2期498-508,共11页
Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel ne... Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms. 展开更多
关键词 Energy harvesting WSN Deployment optimization Confident information coverage(CIC) Target perpetual coverage
下载PDF
Bandwidth allocation algorithm for aggregated tree in optical networks
2
作者 汪学舜 CHEN Pei-jie ZHU Guo-sheng 《Journal of Chongqing University》 CAS 2013年第4期170-178,共9页
Wavelength and bandwidth allocation is important for multicast communication in optical networks. In this paper,a new method based on scheduling theory is proposed. The proposed method formulates wavelength bandwidth ... Wavelength and bandwidth allocation is important for multicast communication in optical networks. In this paper,a new method based on scheduling theory is proposed. The proposed method formulates wavelength bandwidth capacity as a large rectangle and these multicast stream bandwidth requirements as small rectangles. It treats the wavelength and bandwidth allocation question as a rectangle packing problem. The proposed algorithm solves the problem by taking quasi-human strategy with Euclidian distance. It is an effective heuristic algorithm to quickly solve multicast stream bandwidth allocation problem in optical networks by theoretic analysis. Further simulation experiments show the bandwidth allocation algorithm can increase network utilization and have a good fairness performance for unicast stream and multicast stream in optical networks. The results indicate the effectiveness of the algorithm. 展开更多
关键词 MULTICAST wavelength and bandwidth allocation rectangle packing quasi-human strategy UTILITY
下载PDF
A novel algorithm for Ethernet-passive-optical-network dynamic bandwidth allocation based on threshold
3
作者 汪学舜 《Journal of Chongqing University》 CAS 2011年第1期45-50,共6页
The Ethemet passive optical network (EPON) is the next generation of broad-band network technique. A crucial issue in EPONs is the sharing of uplink bandwidth among optical network units (ONUs). This article provi... The Ethemet passive optical network (EPON) is the next generation of broad-band network technique. A crucial issue in EPONs is the sharing of uplink bandwidth among optical network units (ONUs). This article provides a novel dynamic bandwidth allocation algorithm, i.e. threshold dynamic bandwidth allocation (TDBA), which is based on adaptive threshold, to increase resource utilization. The algorithm uses ONU data-transmitting rate to adjust optical line terminal (OLT) receiving data threshold from an ONU. Simulation results show that this algorithm can decrease average packet delay and increase network throughput in a l 0G EPON system. 展开更多
关键词 Ethernet passive optical network (EPON) dynamic bandwidth allocation (DBA) optical network unit (ONU) optical line terminal (OLT): oolling cvcle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部