Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However...Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.展开更多
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact...Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.展开更多
In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This st...In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This study focuses on surface coating with NiTiO_(3) achieved via secondary heat treatment using a coating precursor and the surface material.Through in-situ x-ray diffraction(XRD)and differential electrochemical mass spectrometry(DEMS),along with crystal structure characterizations of post-cycling materials,it was determined that the NiTiO_(3) coating layer facilitates the formation of a stable lattice structure,effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte.This enhancement in cycling stability was evidenced by a capacity retention of approximately 74%over 300 cycles at 1 C,marking a significant 30%improvement over the initial sample.Furthermore,notable advancements in rate performance were observed.Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase,presenting a novel approach for designing layered oxide cathodes with higher energy density.展开更多
Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures...Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems.展开更多
N-polar GaN film was obtained by using a high-temperature AlN buffer layer.It was found that the polarity could be inverted by a thin low-temperature AlN interlayer with the same V/III ratio as that of the high-temper...N-polar GaN film was obtained by using a high-temperature AlN buffer layer.It was found that the polarity could be inverted by a thin low-temperature AlN interlayer with the same V/III ratio as that of the high-temperature AlN layer.Continuing to increase the V/III ratio of the low-temperature AlN interlayer,the Ga-polarity of GaN film was inverted to N-polarity again but the crystal quality and surface roughness of GaN film greatly deteriorated.Finally,we analyzed the chemical environment of the AlN layer by x-ray photoelectron spectroscopy(XPS),which provides a new direction for the control of GaN polarity.展开更多
All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significa...All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significant progress has been made on improving the ionic conductivity of SEs,the degradation and instability of Li metal/inorganic SE interfaces have become the critical challenges that limit the coulombic efficiency,power performance,and cycling stability of ASSLBs.Understanding the mechanisms of complex/dynamic interfacial phenomena is of great importance in addressing these issues.Herein,recent studies on identifying,understanding,and solving interfacial issues on anode side in ASSLBs are comprehensively reviewed.Typical issues at Li metal/SE interface include Li dendrite growth/propagation,SE cracking,physical contact loss,and electrochemical reactions,which lead to high interfacial resistance and cell failure.The causes of these issues relating to the chemical,physical,and mechanical properties of Li metal and SEs are systematically discussed.Furthermore,effective mitigating strategies are summarized and their effects on suppressing interfacial reactions,improving interfacial Li-ion transport,maintaining interfacial contact,and stabilizing Li plating/stripping are highlighted.The in-depth mechanistic understanding of interfacial issues and complete investigations on current solutions provide foundations and guidance for future research and development to realize practical application of high-performance ASSLB.展开更多
The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion ba...The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion batteries.Thus,stabilizing the surfaces of LROs is the key to realize their practical application in high energy density Li-ion batteries.Surface coating is regarded as one of the most effective strategies for high voltage cathodes.The ideal coating materials should prevent cathodes from electrolyte corrosion and possess both electronic and Li-ionic conductivities simultaneously.However,commonly reported coating materials are unable to balance these functions well.Herein,a new type of coating material,La_(2)CuO_(4)was introduced to mitigate the surface issues of LROs for the first time,due to its superb electronic conductivity(26-35 mS·cm^(-1))and lithium-ionic diffusion coefficient(10^(-12)-10^(-13)cm^(2)·s^(-1)).After coating with the La_(2)CuO_(4),the capacity retention of Li_(1.2)Ni_(0.54)Co_(0.13)Mn_(0.13)O_(2)cathode was increased to 85.9%(compared to 79.3%of uncoated cathode)after 150 cycles in the voltage range of 2.0-4.8 V.In addition,only negligible degradations on the deliverable capacity and rate capability were observed.展开更多
The non-Hermitian systems with the non-Hermitian skin effect(NHSE)are very sensitive to the imposed boundary conditions and lattice sizes,which lead to size-dependent non-Hermitian skin effects.Here,we report the expe...The non-Hermitian systems with the non-Hermitian skin effect(NHSE)are very sensitive to the imposed boundary conditions and lattice sizes,which lead to size-dependent non-Hermitian skin effects.Here,we report the experimental observation of NHSE with different boundary conditions and different lattice sizes in the unidirectional hopping model based on a circuit platform.The circuit admittance spectra and corresponding eigenstates are very sensitive to the presence of the boundary.Meanwhile,our experimental results show how the lattice sizes and boundary terms together affect the strength of NHSE.Therefore,our electric circuit provides a good platform to observe size-dependent boundary effects in non-Hermitian systems.展开更多
Safety requirements stimulate Na-based batteries to evolve from high-temperature Na–S batteries to room-temperature Na-ion batteries(NIBs).Even so,NIBs may still cause thermal runaway due to the external unexpected a...Safety requirements stimulate Na-based batteries to evolve from high-temperature Na–S batteries to room-temperature Na-ion batteries(NIBs).Even so,NIBs may still cause thermal runaway due to the external unexpected accidents and internal high activity of electrodes or electrolytes,which has not been comprehensively summarized yet.In this review,we summarize the significant advances about the failure mechanisms and related strategies to build safer NIBs from the selection of electrodes,electrolytes and the construction of electrode/electrolyte interfaces.Considering the safety risk,the thermal behaviors are emphasized which will deepen the understanding of thermal stability of different NIBs and accelerate the exploitation of safe NIBs.展开更多
The low ionic conductivity of solid-state electrolytes(SSEs)and the inferior interfacial reliability between SSEs and solid-state electrodes are two urgent challenges hindering the application of solid-state sodium ba...The low ionic conductivity of solid-state electrolytes(SSEs)and the inferior interfacial reliability between SSEs and solid-state electrodes are two urgent challenges hindering the application of solid-state sodium batteries(SSSBs).Herein,sodium(Na)super ionic conductor(NASICON)-type SSEs with a nominal composition of Na_(3+2x)Zr_(2-x)MgxSi_(2)PO_(12) were synthesized using a facile two-step solid-state method,among which Na_(3.3)Zr_(1.85)Mg_(0.15)Si_(2)PO_(12)(x=0.15,NZSP-Mg_(0.15))showed the highest ionic conductivity of 3.54mS∙cm^(-1) at 25℃.By means of a thorough investigation,it was verified that the composition of the grain boundary plays a crucial role in determining the total ionic conductivity of NASICON.Furthermore,due to a lack of examination in the literature regarding whether NASICON can provide enough anodic electrochemical stability to enable high-voltage SSSBs,we first adopted a high-voltage Na_(3)(VOPO_(4))2F(NVOPF)cathode to verify its compatibility with the optimized NZSP-Mg_(0.15) SSE.By comparing the electrochemical performance of cells with different configurations(low-voltage cathode vs high-voltage cathode,liquid electrolytes vs SSEs),along with an X-ray photoelectron spectroscopy evaluation of the after-cycled NZSP-Mg_(0.15),it was demonstrated that the NASICON SSEs are not stable enough under high voltage,suggesting the importance of investigating the interface between the NASICON SSEs and high-voltage cathodes.Furthermore,by coating NZSP-Mg_(0.15) NASICON powder onto a polyethylene(PE)separator(PE@NASICON),a 2.42 A∙h non-aqueous Na-ion cell of carbon|PE@NASICON|NaNi_(2/9)Cu_(1/9)Fe_(1/3)Mn_(1/3)O_(2) was found to deliver an excellent cycling performance with an 88%capacity retention after 2000 cycles,thereby demonstrating the high reliability of SSEs with NASICON-coated separator.展开更多
The dissolution of transition metal(TM)cations from oxide cathodes and the subsequent migration and deposition on the anode lead to the deconstruction of cathode materials and uncontrollable growth of solid electrode ...The dissolution of transition metal(TM)cations from oxide cathodes and the subsequent migration and deposition on the anode lead to the deconstruction of cathode materials and uncontrollable growth of solid electrode interphase(SEI).The above issues have been considered as main causes for the performance degradation of lithium-ion batteries(LIBs).In this work,we reported that the solid oxide electrolyte Li1.5Al0.5Ti1.5(PO4)3(LATP)coating on polyethylene(PE)polymer separator can largely block the TM dissolution and deposition in LIBs.Scanning electron microscopy(SEM),second ion mass spectroscopy(SIMS),and Raman spectroscopy characterizations reveal that the granular surface of the LATP coating layer is converted to a dense morphology due to the reduction of LATP at discharge process.The as-formed dense surface layer can effectively hinder the TM deposition on the anode electrode and inhibit the TM dissolution from the cathode electrode.As a result,both the LiCoO2/SiO-graphite and LiMn2O4/SiO-graphite cells using LATP coated PE separator show substantially enhanced cycle performances compared with those cells with Al2O3 coated PE separator.展开更多
Electron density plays an important role in determining the properties of functional materials.Revealing the electron density distribution experimentally in real space can help to tune the properties of materials.Spin...Electron density plays an important role in determining the properties of functional materials.Revealing the electron density distribution experimentally in real space can help to tune the properties of materials.Spinel Li Mn2 O4 is one of the most promising cathode candidates because of its high voltage,low cost,and non-toxicity,but suffers severe capacity fading during electrochemical cycling due to the Mn dissolution.Real-space measurement of electron distribution of Li Mn2 O4 experimentally can provide direct evaluation on the strength of Mn–O bond and give an explanation of the structure stability.Here,through high energy synchrotron powder x-ray diffraction(SPXRD),accurate electron density distribution in spinel Li Mn2 O4 has been investigated based on the multipole model.The electron accumulation between Mn and O atoms in deformation density map indicates the shared interaction of Mn–O bond.The quantitative topological analysis at bond critical points shows that the Mn–O bond is relatively weak covalent interaction due to the oxygen loss.These findings suggest that oxygen stoichiometry is the key factor for preventing the Mn dissolution and capacity fading.展开更多
Although it has been proven that porous,heteroatomic,and defective structures improve Na storage performance,they also severely affect the initial Coulombic efficiency(ICE)due to the huge irreversible capacity in the ...Although it has been proven that porous,heteroatomic,and defective structures improve Na storage performance,they also severely affect the initial Coulombic efficiency(ICE)due to the huge irreversible capacity in the first cycle,which always limits the practical application of carbon anodes in commercial Na-ion batteries(NIBs).Here,we show the successful synthesis of nanocrystalline cellulose and the derivative hard carbons.A series of treatments including acid hydrolysis,hydrothermal carbonization,and hightemperature pyrolysis help tune the pores,heteroatoms,and defects to achieve an optimized balance between superior ICE and reversible capacity of up to 90.4%and 314 mAh g^(−1).This study highlights that tailoring the electrode microstructure could be an important strategy in the future design of carbonaceous anode materials for high-performance Na-ion batteries.展开更多
We study the one-dimensional general non-Hermitian models with asymmetric long-range hopping and explore how to analytically solve the systems under some specific boundary conditions.Although the introduction of long-...We study the one-dimensional general non-Hermitian models with asymmetric long-range hopping and explore how to analytically solve the systems under some specific boundary conditions.Although the introduction of long-range hopping terms prevents us from finding analytical solutions for arbitrary boundary parameters,we identify the existence of exact solutions when the boundary parameters fulfill some constraint relations,which give the specific boundary conditions.Our analytical results show that the wave functions take simple forms and are independent of hopping range,while the eigenvalue spectra display rich model-dependent structures.Particularly,we find the existence of a special point coined as pseudo-periodic boundary condition,for which the eigenvalues are the same as those of the periodical system when the hopping parameters fulfill certain conditions,whereas the eigenstates display the non-Hermitian skin effect.展开更多
Sulfide solid electrolytes are widely regarded as one of the most promising technical routes to realize all-solid-state batteries(ASSBs)due to their high ionic conductivity and favorable deformability.However,the rela...Sulfide solid electrolytes are widely regarded as one of the most promising technical routes to realize all-solid-state batteries(ASSBs)due to their high ionic conductivity and favorable deformability.However,the relatively high price of the crucial starting material,Li_(2)S,results in high costs of sulfide solid electrolytes,limiting their practical application in ASSBs.To solve this problem,we develop a new synthesis route of Li_(2)S via liquid-phase synthesis method,employing lithium and biphenyl in 1,2-dimethoxyethane(DME)ether solvent to form a lithium solution as the lithium precursor.Because of the comparatively strong reducibility of the lithium solution,its reaction with sulfur proceeds effectively even at room temperature.This new synthesis route of Li_(2)S starts with cheap precursors of lithium,sulfur,biphenyl and DME solvent,and the only remaining byproduct(DME solution of biphenyl)after the collection of Li_(2)S product can be recycled and reused.Besides,the reaction can proceed effectively at room temperature with mild condition,reducing energy cost to a great extent.The as-synthesized Li_(2)S owns uniform and extremely small particle size,proved to be feasible in synthesizing sulfide solid electrolytes(such as the solid-state synthesis of Li_(6)PS_(5)C_(l)).Spontaneously,this lithium solution can be directly employed in the synthesis of Li_(3)PS_(4) solid electrolytes via liquid-phase synthesis method,in which the centrifugation and heat treatment processes of Li_(2)S are not necessary,providing simplified production process.The as-synthesized Li_(3)PS_(4) exhibits typical Li+conductivity of 1.85×10^(-4) S·cm^(-1) at 30℃.展开更多
The anionic redox reaction(ARR)is a promising charge contributor to improve the reversible capacity of layeredoxide cathodes for Na-ion batteries;however,some practical bottlenecks still need to be eliminated,includin...The anionic redox reaction(ARR)is a promising charge contributor to improve the reversible capacity of layeredoxide cathodes for Na-ion batteries;however,some practical bottlenecks still need to be eliminated,including a low capacity retention,large voltage hysteresis,and low rate capability.Herein,we proposed a high-Na content honeycomb-ordered cathode,P2–Na_(5/6)[Li_(1/6)Cu_(1/6)Mn_(2/3)]O_(2)(P2-NLCMO),with combined cationic/anionic redox.Neutron powder diffraction and X-ray diffraction of P2-NLCMO suggested P2-type stacking with rarely found P6322 symmetry.In addition,advanced spectroscopy techniques and density functional theory calculations confirmed the synergistic stabilizing relationship between the Li/Cu dual honeycomb centers,achieving fully active Cu^(3+)/Cu^(2+) redox and stabilized ARR with interactively suppressed local distortion.With a meticulously regulated charge/discharge protocol,both the cycling and rate capability of P2-NLCMO were significantly.展开更多
We demonstrate that a low-temperature Ga N insertion layer could significantly improve the surface morphology of non-polar a-plane Ga N.The two key factors in improving the surface morphology of non-polar a-plane Ga N...We demonstrate that a low-temperature Ga N insertion layer could significantly improve the surface morphology of non-polar a-plane Ga N.The two key factors in improving the surface morphology of non-polar a-plane Ga N are growth temperature and growth time of the Ga N insertion layer.The root-mean-square roughness of a-plane Ga N is reduced by 75%compared to the sample without the Ga N insertion layer.Meanwhile,the Ga N insertion layer is also beneficial for improving crystal quality.This work provides a simple and effective method to improve the surface morphology of non-polar a-plane Ga N.展开更多
We systematically study the low-temperature specific heats for the two-dimensional kagome antiferromagnet,Cu_(3)Zn(OH)_(6)FBr.The specific heat exhibits a T1.7 dependence at low temperatures and a shoulder-like featur...We systematically study the low-temperature specific heats for the two-dimensional kagome antiferromagnet,Cu_(3)Zn(OH)_(6)FBr.The specific heat exhibits a T1.7 dependence at low temperatures and a shoulder-like feature above it.We construct a microscopic lattice model of Z_(2) quantum spin liquid and perform large-scale quantum Monte Carlo simulations to show that the above behaviors come from the contributions from gapped anyons and magnetic impurities.Surprisingly,we find the entropy associated with the shoulder decreases quickly with grain size d,although the system is paramagnetic to the lowest temperature.While this can be simply explained by a core-shell picture in that the contribution from the interior state disappears near the surface,the 5.9-nm shell width precludes any trivial explanations.Such a large length scale signifies the coherence length of the nonlocality of the quantum entangled excitations in quantum spin liquid candidate,similar to Pippard’s coherence length in superconductors.Our approach therefore offers a new experimental probe of the intangible quantum state of matter with topological order.展开更多
SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method.The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the ...SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method.The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the diameter and Ge composition of the SiGe spheres can be well controlled by adjusting the laser energy density.In addition,the transmission electron microscopy results show that Ge composition inside the SiGe spheres is almost uniform in a well-defined,nearly spherical outline.As a convenient method to prepare sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size,this technique is expected to be useful for SiGe-based material growth and micro/optoelectronic device fabrication.展开更多
The oxygen-containing functional groups in disordered carbon anodes have been widely reported to influence the Na storage performance.However,the effect of original oxygen-containing groups in the precursors on the fi...The oxygen-containing functional groups in disordered carbon anodes have been widely reported to influence the Na storage performance.However,the effect of original oxygen-containing groups in the precursors on the final structures and electrochemical performance is rarely studied.Herein,we used the anthraquinone derivatives with different oxygen-containing functional groups as precursors to make the disordered carbon anodes for Na-ion batteries(NIBs).Through comprehensive structural and electrochemical analyses,we found that the different types of functional groups in carbon precursors directly affect the cross-linking process during carbonization.The original precursors containing enough inter-chain oxygen or oxygen-containing functional groups with unsaturated bonds unattached to the ring are beneficial for the oxygen atoms to remain or cross-link in structure to result in more C–O–C group,forming nanovoids and disordered structure,which then determine the high performance of the carbon anodes in NIBs.This work highlights the importance of the type/content of functional groups in precursor and provides guidance for the future design of carbon anodes in NIBs from the perspective of precursor selection.展开更多
基金the National Natural Science Foundation of China(Grant Nos.61991441 and 62004218)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01000000)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021005).
文摘Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.
基金supported by the National Natural Science Foundation of China (Grant Nos.U22A6005 and 12074408)the National Key Research and Development Program of China (Grant No.2021YFA1301502)+7 种基金Guangdong Major Scientific Research Project (Grant No.2018KZDXM061)Youth Innovation Promotion Association of CAS (Grant No.2021009)Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos.YJKYYQ20200055,ZDKYYQ2017000,and 22017BA10)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos.XDB25000000 and XDB33010100)Beijing Municipal Science and Technology Major Project (Grant No.Z201100001820006)IOP Hundred Talents Program (Grant No.Y9K5051)Postdoctoral Support Program of China (Grant No.2020M670501)the Synergetic Extreme Condition User Facility (SECUF)。
文摘Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFB2402500)the National Natural Science Foundation of China (Grant Nos.52122214,92372116,and 52394174)+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2020006)Jiangsu Province Carbon Peak and Neutrality Innovation Program (Industry tackling on prospect and key technology BE2022002-5)Guangxi Power Grid Project (Grant No.GXKJXM20210260)。
文摘In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This study focuses on surface coating with NiTiO_(3) achieved via secondary heat treatment using a coating precursor and the surface material.Through in-situ x-ray diffraction(XRD)and differential electrochemical mass spectrometry(DEMS),along with crystal structure characterizations of post-cycling materials,it was determined that the NiTiO_(3) coating layer facilitates the formation of a stable lattice structure,effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte.This enhancement in cycling stability was evidenced by a capacity retention of approximately 74%over 300 cycles at 1 C,marking a significant 30%improvement over the initial sample.Furthermore,notable advancements in rate performance were observed.Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase,presenting a novel approach for designing layered oxide cathodes with higher energy density.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61991441 and 62004218)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB01000000)Youth Innovation Promotion Association Chinese Academy of Sciences (Grant No. 2021005)。
文摘Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.62004218)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000).
文摘N-polar GaN film was obtained by using a high-temperature AlN buffer layer.It was found that the polarity could be inverted by a thin low-temperature AlN interlayer with the same V/III ratio as that of the high-temperature AlN layer.Continuing to increase the V/III ratio of the low-temperature AlN interlayer,the Ga-polarity of GaN film was inverted to N-polarity again but the crystal quality and surface roughness of GaN film greatly deteriorated.Finally,we analyzed the chemical environment of the AlN layer by x-ray photoelectron spectroscopy(XPS),which provides a new direction for the control of GaN polarity.
基金supported by the Outstanding Youth Fund Project by the Department of Science and Technology of Jiangsu Province(Grant No.BK20220045)the Key R&D Project funded by the Department of Science and Technology of Jiangsu Province(Grant No.BE2020003)+6 种基金Key Program-Automobile Joint Fund of National Natural Science Foundation of China(Grant No.U1964205)General Program of National Natural Science Foundation of China(Grant No.51972334)General Program of National Natural Science Foundation of Beijing(Grant No.2202058)Cultivation project of leading innovative experts in Changzhou City(CQ20210003)National Overseas High-level Expert recruitment Program(Grant No.E1JF021E11)Talent Program of Chinese Academy of Sciences,“Scientist Studio Program Funding”from Yangtze River Delta Physics Research Center,and Tianmu Lake Institute of Advanced Energy Storage Technologies(Grant No.TIESSS0001)Science and Technology Research Institute of China Three Gorges Corporation(Grant No.202103402)
文摘All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significant progress has been made on improving the ionic conductivity of SEs,the degradation and instability of Li metal/inorganic SE interfaces have become the critical challenges that limit the coulombic efficiency,power performance,and cycling stability of ASSLBs.Understanding the mechanisms of complex/dynamic interfacial phenomena is of great importance in addressing these issues.Herein,recent studies on identifying,understanding,and solving interfacial issues on anode side in ASSLBs are comprehensively reviewed.Typical issues at Li metal/SE interface include Li dendrite growth/propagation,SE cracking,physical contact loss,and electrochemical reactions,which lead to high interfacial resistance and cell failure.The causes of these issues relating to the chemical,physical,and mechanical properties of Li metal and SEs are systematically discussed.Furthermore,effective mitigating strategies are summarized and their effects on suppressing interfacial reactions,improving interfacial Li-ion transport,maintaining interfacial contact,and stabilizing Li plating/stripping are highlighted.The in-depth mechanistic understanding of interfacial issues and complete investigations on current solutions provide foundations and guidance for future research and development to realize practical application of high-performance ASSLB.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFE0100200)the National Natural Science Foundation of China(Grant No.U1964205)the Beijing Municipal Science and Technology Commission(Grant No.Z191100004719001)。
文摘The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion batteries.Thus,stabilizing the surfaces of LROs is the key to realize their practical application in high energy density Li-ion batteries.Surface coating is regarded as one of the most effective strategies for high voltage cathodes.The ideal coating materials should prevent cathodes from electrolyte corrosion and possess both electronic and Li-ionic conductivities simultaneously.However,commonly reported coating materials are unable to balance these functions well.Herein,a new type of coating material,La_(2)CuO_(4)was introduced to mitigate the surface issues of LROs for the first time,due to its superb electronic conductivity(26-35 mS·cm^(-1))and lithium-ionic diffusion coefficient(10^(-12)-10^(-13)cm^(2)·s^(-1)).After coating with the La_(2)CuO_(4),the capacity retention of Li_(1.2)Ni_(0.54)Co_(0.13)Mn_(0.13)O_(2)cathode was increased to 85.9%(compared to 79.3%of uncoated cathode)after 150 cycles in the voltage range of 2.0-4.8 V.In addition,only negligible degradations on the deliverable capacity and rate capability were observed.
基金the State Key Development Program for Basic Research of China(Grant No.2017YFA0304300)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030001)+1 种基金the National Natural Science Foundation of China(Grant No.T2121001)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000).
文摘The non-Hermitian systems with the non-Hermitian skin effect(NHSE)are very sensitive to the imposed boundary conditions and lattice sizes,which lead to size-dependent non-Hermitian skin effects.Here,we report the experimental observation of NHSE with different boundary conditions and different lattice sizes in the unidirectional hopping model based on a circuit platform.The circuit admittance spectra and corresponding eigenstates are very sensitive to the presence of the boundary.Meanwhile,our experimental results show how the lattice sizes and boundary terms together affect the strength of NHSE.Therefore,our electric circuit provides a good platform to observe size-dependent boundary effects in non-Hermitian systems.
基金Project supported by the National Key Technologies R&D Program,China(Grant No.2016YFB0901500)the National Natural Science Foundation(NSFC)of China(Grant Nos.51725206 and 51421002)+3 种基金NSFCUKRI EPSRC(Grant No.51861165201)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21070500)Beijing Municipal Science and Technology Commission,China(Grant No.Z181100004718008)Beijing Natural Science Fund–Haidian Original Innovation Joint Fund,China(Grant No.L182056)。
文摘Safety requirements stimulate Na-based batteries to evolve from high-temperature Na–S batteries to room-temperature Na-ion batteries(NIBs).Even so,NIBs may still cause thermal runaway due to the external unexpected accidents and internal high activity of electrodes or electrolytes,which has not been comprehensively summarized yet.In this review,we summarize the significant advances about the failure mechanisms and related strategies to build safer NIBs from the selection of electrodes,electrolytes and the construction of electrode/electrolyte interfaces.Considering the safety risk,the thermal behaviors are emphasized which will deepen the understanding of thermal stability of different NIBs and accelerate the exploitation of safe NIBs.
基金the National Key Technologies Research and Development Program,China(2016YFB0901500)the Opening Project of the Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University(JDGD-201703)+2 种基金the National Natural Science Foundation of China(51725206 and 51421002)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070500)the Youth Innovation Promotion Association,Chinese Academy of Sciences(2020006).
文摘The low ionic conductivity of solid-state electrolytes(SSEs)and the inferior interfacial reliability between SSEs and solid-state electrodes are two urgent challenges hindering the application of solid-state sodium batteries(SSSBs).Herein,sodium(Na)super ionic conductor(NASICON)-type SSEs with a nominal composition of Na_(3+2x)Zr_(2-x)MgxSi_(2)PO_(12) were synthesized using a facile two-step solid-state method,among which Na_(3.3)Zr_(1.85)Mg_(0.15)Si_(2)PO_(12)(x=0.15,NZSP-Mg_(0.15))showed the highest ionic conductivity of 3.54mS∙cm^(-1) at 25℃.By means of a thorough investigation,it was verified that the composition of the grain boundary plays a crucial role in determining the total ionic conductivity of NASICON.Furthermore,due to a lack of examination in the literature regarding whether NASICON can provide enough anodic electrochemical stability to enable high-voltage SSSBs,we first adopted a high-voltage Na_(3)(VOPO_(4))2F(NVOPF)cathode to verify its compatibility with the optimized NZSP-Mg_(0.15) SSE.By comparing the electrochemical performance of cells with different configurations(low-voltage cathode vs high-voltage cathode,liquid electrolytes vs SSEs),along with an X-ray photoelectron spectroscopy evaluation of the after-cycled NZSP-Mg_(0.15),it was demonstrated that the NASICON SSEs are not stable enough under high voltage,suggesting the importance of investigating the interface between the NASICON SSEs and high-voltage cathodes.Furthermore,by coating NZSP-Mg_(0.15) NASICON powder onto a polyethylene(PE)separator(PE@NASICON),a 2.42 A∙h non-aqueous Na-ion cell of carbon|PE@NASICON|NaNi_(2/9)Cu_(1/9)Fe_(1/3)Mn_(1/3)O_(2) was found to deliver an excellent cycling performance with an 88%capacity retention after 2000 cycles,thereby demonstrating the high reliability of SSEs with NASICON-coated separator.
基金the National Key R&D Program of China(Grant No.2016YFB0100100)the National Natural Science Foundation of China(Grant Nos.51822211,U1932220,U1964205,and U19A2018).
文摘The dissolution of transition metal(TM)cations from oxide cathodes and the subsequent migration and deposition on the anode lead to the deconstruction of cathode materials and uncontrollable growth of solid electrode interphase(SEI).The above issues have been considered as main causes for the performance degradation of lithium-ion batteries(LIBs).In this work,we reported that the solid oxide electrolyte Li1.5Al0.5Ti1.5(PO4)3(LATP)coating on polyethylene(PE)polymer separator can largely block the TM dissolution and deposition in LIBs.Scanning electron microscopy(SEM),second ion mass spectroscopy(SIMS),and Raman spectroscopy characterizations reveal that the granular surface of the LATP coating layer is converted to a dense morphology due to the reduction of LATP at discharge process.The as-formed dense surface layer can effectively hinder the TM deposition on the anode electrode and inhibit the TM dissolution from the cathode electrode.As a result,both the LiCoO2/SiO-graphite and LiMn2O4/SiO-graphite cells using LATP coated PE separator show substantially enhanced cycle performances compared with those cells with Al2O3 coated PE separator.
基金Beijing Natural Science Foundation,China(Grant No.Z190010)the National Key Research and Development Program of China(Grant No.2019YFA0308500)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)Key Research Projects of Frontier Science of Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC035)the National Natural Science Foundation of China(Grant Nos.51421002,51672307,51991344,52025025,and 52072400).
文摘Electron density plays an important role in determining the properties of functional materials.Revealing the electron density distribution experimentally in real space can help to tune the properties of materials.Spinel Li Mn2 O4 is one of the most promising cathode candidates because of its high voltage,low cost,and non-toxicity,but suffers severe capacity fading during electrochemical cycling due to the Mn dissolution.Real-space measurement of electron distribution of Li Mn2 O4 experimentally can provide direct evaluation on the strength of Mn–O bond and give an explanation of the structure stability.Here,through high energy synchrotron powder x-ray diffraction(SPXRD),accurate electron density distribution in spinel Li Mn2 O4 has been investigated based on the multipole model.The electron accumulation between Mn and O atoms in deformation density map indicates the shared interaction of Mn–O bond.The quantitative topological analysis at bond critical points shows that the Mn–O bond is relatively weak covalent interaction due to the oxygen loss.These findings suggest that oxygen stoichiometry is the key factor for preventing the Mn dissolution and capacity fading.
基金Natural Science Foundation of Beijing Municipality,Grant/Award Number:2212022Science and Technology Facilities Council,Grant/Award Number:ST/R006873/1+3 种基金China Postdoctoral Science Foundation,Grant/Award Number:2021M693367National Natural Science Foundation of China,Grant/Award Numbers:51725206,51861165201,52072403,52122214Engineering and Physical Sciences Research Council,Grant/Award Numbers:EP/R021554/2,EP/S018204/2Chinese Academy of Sciences,Grant/Award Numbers:2020006,XDA21070500。
文摘Although it has been proven that porous,heteroatomic,and defective structures improve Na storage performance,they also severely affect the initial Coulombic efficiency(ICE)due to the huge irreversible capacity in the first cycle,which always limits the practical application of carbon anodes in commercial Na-ion batteries(NIBs).Here,we show the successful synthesis of nanocrystalline cellulose and the derivative hard carbons.A series of treatments including acid hydrolysis,hydrothermal carbonization,and hightemperature pyrolysis help tune the pores,heteroatoms,and defects to achieve an optimized balance between superior ICE and reversible capacity of up to 90.4%and 314 mAh g^(−1).This study highlights that tailoring the electrode microstructure could be an important strategy in the future design of carbonaceous anode materials for high-performance Na-ion batteries.
基金the National Key Research and Development Program of China(Grant No.2016YFA0300600)the National Natural Science Foundation of China(Grant No.11974413)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000).
文摘We study the one-dimensional general non-Hermitian models with asymmetric long-range hopping and explore how to analytically solve the systems under some specific boundary conditions.Although the introduction of long-range hopping terms prevents us from finding analytical solutions for arbitrary boundary parameters,we identify the existence of exact solutions when the boundary parameters fulfill some constraint relations,which give the specific boundary conditions.Our analytical results show that the wave functions take simple forms and are independent of hopping range,while the eigenvalue spectra display rich model-dependent structures.Particularly,we find the existence of a special point coined as pseudo-periodic boundary condition,for which the eigenvalues are the same as those of the periodical system when the hopping parameters fulfill certain conditions,whereas the eigenstates display the non-Hermitian skin effect.
基金This work is supported by Key R&D Project funded by Department of Science and Technology of Jiangsu Province(Grant No.BE2020003)Key Program-Automobile Joint Fund of National Natural Science Foundation of China(Grant No.U1964205)+5 种基金General Program of National Natural Science Foundation of China(Grant No.51972334)General Program of National Natural Science Foundation of Beijing(Grant No.2202058)Cultivation Project of Leading Innovative Experts in Changzhou City(Grant No.CQ20210003)National Overseas High-level Expert Recruitment Program(Grant No.E1JF021E11)Talent Program of Chinese Academy of Sciences,"Scientist Studio Program Funding"from Yangtze River Delta Physics Research Center and Tianmu Lake Institute of Advanced Energy Storage Technologies(Grant No.TIES-SS0001)Science and Technology Research Research Institute of China Three Gorges Corporation(Grant No.202103402).
文摘Sulfide solid electrolytes are widely regarded as one of the most promising technical routes to realize all-solid-state batteries(ASSBs)due to their high ionic conductivity and favorable deformability.However,the relatively high price of the crucial starting material,Li_(2)S,results in high costs of sulfide solid electrolytes,limiting their practical application in ASSBs.To solve this problem,we develop a new synthesis route of Li_(2)S via liquid-phase synthesis method,employing lithium and biphenyl in 1,2-dimethoxyethane(DME)ether solvent to form a lithium solution as the lithium precursor.Because of the comparatively strong reducibility of the lithium solution,its reaction with sulfur proceeds effectively even at room temperature.This new synthesis route of Li_(2)S starts with cheap precursors of lithium,sulfur,biphenyl and DME solvent,and the only remaining byproduct(DME solution of biphenyl)after the collection of Li_(2)S product can be recycled and reused.Besides,the reaction can proceed effectively at room temperature with mild condition,reducing energy cost to a great extent.The as-synthesized Li_(2)S owns uniform and extremely small particle size,proved to be feasible in synthesizing sulfide solid electrolytes(such as the solid-state synthesis of Li_(6)PS_(5)C_(l)).Spontaneously,this lithium solution can be directly employed in the synthesis of Li_(3)PS_(4) solid electrolytes via liquid-phase synthesis method,in which the centrifugation and heat treatment processes of Li_(2)S are not necessary,providing simplified production process.The as-synthesized Li_(3)PS_(4) exhibits typical Li+conductivity of 1.85×10^(-4) S·cm^(-1) at 30℃.
基金supported by the National Natural Science Foundation(NSFC)of China(52002394)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020006).
文摘The anionic redox reaction(ARR)is a promising charge contributor to improve the reversible capacity of layeredoxide cathodes for Na-ion batteries;however,some practical bottlenecks still need to be eliminated,including a low capacity retention,large voltage hysteresis,and low rate capability.Herein,we proposed a high-Na content honeycomb-ordered cathode,P2–Na_(5/6)[Li_(1/6)Cu_(1/6)Mn_(2/3)]O_(2)(P2-NLCMO),with combined cationic/anionic redox.Neutron powder diffraction and X-ray diffraction of P2-NLCMO suggested P2-type stacking with rarely found P6322 symmetry.In addition,advanced spectroscopy techniques and density functional theory calculations confirmed the synergistic stabilizing relationship between the Li/Cu dual honeycomb centers,achieving fully active Cu^(3+)/Cu^(2+) redox and stabilized ARR with interactively suppressed local distortion.With a meticulously regulated charge/discharge protocol,both the cycling and rate capability of P2-NLCMO were significantly.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11574362 and 61704008)。
文摘We demonstrate that a low-temperature Ga N insertion layer could significantly improve the surface morphology of non-polar a-plane Ga N.The two key factors in improving the surface morphology of non-polar a-plane Ga N are growth temperature and growth time of the Ga N insertion layer.The root-mean-square roughness of a-plane Ga N is reduced by 75%compared to the sample without the Ga N insertion layer.Meanwhile,the Ga N insertion layer is also beneficial for improving crystal quality.This work provides a simple and effective method to improve the surface morphology of non-polar a-plane Ga N.
基金Supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0302900,2016YFA0300500,and2020YFA0406003)the National Natural Science Foundation of China(Grant Nos.11874401,11674406,11961160699,11774399+4 种基金11804383)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB33000000,XDB28000000,XDB25000000XDB07020000)the K.C.Wong Education Foundation(Grant Nos.GJTD-2020-01 and GJTD-2018-01)the Beijing Natural Science Foundation(Grant No.Z180008)。
文摘We systematically study the low-temperature specific heats for the two-dimensional kagome antiferromagnet,Cu_(3)Zn(OH)_(6)FBr.The specific heat exhibits a T1.7 dependence at low temperatures and a shoulder-like feature above it.We construct a microscopic lattice model of Z_(2) quantum spin liquid and perform large-scale quantum Monte Carlo simulations to show that the above behaviors come from the contributions from gapped anyons and magnetic impurities.Surprisingly,we find the entropy associated with the shoulder decreases quickly with grain size d,although the system is paramagnetic to the lowest temperature.While this can be simply explained by a core-shell picture in that the contribution from the interior state disappears near the surface,the 5.9-nm shell width precludes any trivial explanations.Such a large length scale signifies the coherence length of the nonlocality of the quantum entangled excitations in quantum spin liquid candidate,similar to Pippard’s coherence length in superconductors.Our approach therefore offers a new experimental probe of the intangible quantum state of matter with topological order.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62004218,61991441,and 61804176)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021005).
文摘SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method.The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the diameter and Ge composition of the SiGe spheres can be well controlled by adjusting the laser energy density.In addition,the transmission electron microscopy results show that Ge composition inside the SiGe spheres is almost uniform in a well-defined,nearly spherical outline.As a convenient method to prepare sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size,this technique is expected to be useful for SiGe-based material growth and micro/optoelectronic device fabrication.
基金supported by the National Key Research and Development Program of China(No.2022YFB3807800)the National Natural Science Foundation(NSFC)of China(Nos.52122214 and 52072403)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences(CAS)(No.2020006)One Hundred Talent Project of Institute of Physics,CAS.
文摘The oxygen-containing functional groups in disordered carbon anodes have been widely reported to influence the Na storage performance.However,the effect of original oxygen-containing groups in the precursors on the final structures and electrochemical performance is rarely studied.Herein,we used the anthraquinone derivatives with different oxygen-containing functional groups as precursors to make the disordered carbon anodes for Na-ion batteries(NIBs).Through comprehensive structural and electrochemical analyses,we found that the different types of functional groups in carbon precursors directly affect the cross-linking process during carbonization.The original precursors containing enough inter-chain oxygen or oxygen-containing functional groups with unsaturated bonds unattached to the ring are beneficial for the oxygen atoms to remain or cross-link in structure to result in more C–O–C group,forming nanovoids and disordered structure,which then determine the high performance of the carbon anodes in NIBs.This work highlights the importance of the type/content of functional groups in precursor and provides guidance for the future design of carbon anodes in NIBs from the perspective of precursor selection.