Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulati...Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation.The cargo of extra cellular vesicles(e.g.,proteins and microRNAs)is altered in pathological situations.Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation,including cance r,diabetes,hype rammonemia and hepatic encephalopathy,and other neurological and neurodegenerative diseases.Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain.This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases.The mechanisms involved are beginning to be unde rstood.For example,increased tumor necrosis factor a in extracellular vesicles from plasma of hype rammonemic rats induces neuroinflammation and motor impairment when injected into normal rats.Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection.In contrast,extra cellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies,by reducing inflammation and neuroinflammation and improving cognitive and motor function.These extra cellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools:they are less immunoge nic,may not diffe rentiate to malignant cells,cross the blood-brain barrier,and may reach more easily target organs.Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury,Alzheimer's and Parkinson's diseases,hyperammonemia,and hepatic encephalopathy.Extracellular vesicles from mesenchymal stem cells modulate the immune system,promoting the shift from a pro-inflammato ry to an anti-inflammatory state.For example,extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance,promoting the anti-inflammatory Treg.Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation,promoting a shift from a pro-inflammatory to an anti-inflammatory state.This reduces neuroinflammation and improves cognitive and motor function.Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-βand miR-124.Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules(e.g.,proteins and mRNAs)involved may help to improve their therapeutic utility.The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies,the therapeutic potential of extra cellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.展开更多
The recently deployed Transition Region Explorer(TREx)-RGB(red-green-blue)all-sky imager(ASI)is designed to capture“true color”images of the aurora and airglow.Because the 557.7 nm green line is usually the brightes...The recently deployed Transition Region Explorer(TREx)-RGB(red-green-blue)all-sky imager(ASI)is designed to capture“true color”images of the aurora and airglow.Because the 557.7 nm green line is usually the brightest emission line in visible auroras,the green channel of a TREx-RGB camera is usually dominated by the 557.7 nm emission.Under this rationale,the TREx mission does not include a specific 557.7 nm imager and is designed to use the RGB green-channel data as a proxy for the 557.7 nm aurora.In this study,we present an initial effort to establish the conversion ratio or formula linking the RGB green-channel data to the absolute intensity of 557.7 nm auroras,which is crucial for quantitative uses of the RGB data.We illustrate two approaches:(1)through a comparison with the collocated measurement of green-line auroras from the TREx spectrograph,and(2)through a comparison with the modeled green-line intensity according to realistic electron precipitation flux measurements from low-Earth-orbit satellites,with the aid of an auroral transport model.We demonstrate the procedures and provide initial results for the TREx-RGB ASIs at the Rabbit Lake and Lucky Lake stations.The RGB response is found to be nonlinear.Empirical conversion ratios or formulas between RGB green-channel data and the green-line auroral intensity are given and can be applied immediately by TREx-RGB data users.The methodology established in this study will also be applicable to the upcoming SMILE ASI mission,which will adopt a similar RGB camera system in its deployment.展开更多
Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenanc...Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.展开更多
BACKGROUND Helicobacter pylori(H.pylori)is a widespread microorganism related to gastric adenocarcinoma(AC).In contrast,it has been reported that an inverse association exists between H.pylori infection and esophageal...BACKGROUND Helicobacter pylori(H.pylori)is a widespread microorganism related to gastric adenocarcinoma(AC).In contrast,it has been reported that an inverse association exists between H.pylori infection and esophageal carcinoma.The mechanisms underlying this supposedly protective effect remain controversial.AIM To determine the prevalence of H.pylori infection in esophageal carcinoma patients,we performed a retrospective observational study of esophageal tumors diagnosed in our hospital.METHODS We retrospectively reviewed the prevalence of H.pylori infection in a cohort of patients diagnosed with esophageal carcinoma.Concomitant or previous proton pump inhibitor(PPI)usage was also recorded.RESULTS A total of 89 patients with esophageal carcinoma(69 males,77.5%),with a mean age of 66 years(range,26-93 years)were included.AC was the most frequent pathological variant(n=47,52.8%),followed by squamous cell carcinoma(n=37,41.6%).Fourteen ACs(29.8%)originated in the gastroesophageal junction and 33(70.2%)in the esophageal body.Overall,54 patients(60.7%)presented at stages III and IV.Previous H.pylori infection occurred only in 4 patients(4.5%),3 with AC(6.3%of all ACs)and 1 with squamous cell carcinoma(2.7%of all squamous cell tumors).All patients with previous H.pylori infection had stage III-IV.Only one patient had received prior H.pylori eradication therapy,whereas 86(96.6%)had received previous or concomitant PPI treatment.CONCLUSION In our cohort of patients,and after histologic evaluation of paraffin-embedded primary tumors,we found a very low prevalence of previous H.pylori infection.We also reviewed the medical history of the patients,concluding that the majority had received or were on PPI treatment.The minimal prevalence of H.pylori infection found in this cohort of patients with esophageal carcinoma suggests a protective role.展开更多
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und...Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.展开更多
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester...Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.展开更多
The myelin sheath is a lipoprotein-rich,multilayered structure capable of increasing conduction velocity in central and peripheral myelinated nerve fibers.Due to the complex structure and composition of myelin,various...The myelin sheath is a lipoprotein-rich,multilayered structure capable of increasing conduction velocity in central and peripheral myelinated nerve fibers.Due to the complex structure and composition of myelin,various histological techniques have been developed over the centuries to evaluate myelin under normal,pathological or experimental conditions.Today,methods to assess myelin integrity or content are key tools in both clinical diagnosis and neuroscience research.In this review,we provide an updated summary of the composition and structure of the myelin sheath and discuss some histological procedures,from tissue fixation and processing techniques to the most used and practical myelin histological staining methods.Considering the lipoprotein nature of myelin,the main features and technical details of the different available methods that can be used to evaluate the lipid or protein components of myelin are described,as well as the precise ultrastructural techniques.展开更多
Coronavirus disease 2019(COVID-19),caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),primarily impacts the respiratory tract and can lead to severe outcomes such as acute resp...Coronavirus disease 2019(COVID-19),caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome,multiple organ failure,and death.Despite extensive studies on the pathogenicity of SARS-CoV-2,its impact on the hepatobiliary system remains unclear.While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels,the exact source of this damage is not fully understood.Proposed mechanisms for injury include direct cytotoxicity,collateral damage from inflammation,drug-induced liver injury,and ischemia/hypoxia.However,evidence often relies on blood tests with liver enzyme abnormalities.In this comprehensive review,we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients,drawing from liver biopsies,complete autopsies,and in vitro liver analyses.We present evidence of the direct impact of SARS-CoV-2 on the liver,substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes,including mitochondrial swelling,endoplasmic reticulum dilatation,and hepatocyte apoptosis.Additional ly,we describe the diverse liver pathology observed during COVID-19 infection,encompassing necrosis,steatosis,cholestasis,and lobular inflammation.We also discuss the emergence of long-term complications,notably COVID-19-related secondary sclerosing cholangitis.Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.展开更多
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency...High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.展开更多
Background:Stereotactic body radiotherapy(SBRT)in pancreatic cancer allows high delivery of radiation doses on tumors without affecting surrounding tissue.This review aimed at the SBRT application in the treatment of ...Background:Stereotactic body radiotherapy(SBRT)in pancreatic cancer allows high delivery of radiation doses on tumors without affecting surrounding tissue.This review aimed at the SBRT application in the treatment of pancreatic cancer.Data sources:We retrieved articles published in MEDLINE/PubMed from January 2017 to December 2022.Keywords used in the search included:“pancreatic adenocarcinoma”OR“pancreatic cancer”AND“stereotactic ablative radiotherapy(SABR)”OR“stereotactic body radiotherapy(SBRT)”OR“chemoradiotherapy(CRT)”.English language articles with information on technical characteristics,doses and fractionation,indications,recurrence patterns,local control and toxicities of SBRT in pancreatic tumors were included.All articles were assessed for validity and relevant content.Results:Optimal doses and fractionation have not yet been defined.However,SBRT could be the standard treatment in patients with pancreatic adenocarcinoma in addition to CRT.Furthermore,the combination of SBRT with chemotherapy may have additive or synergic effect on pancreatic adenocarcinoma.Conclusions:SBRT is an effective modality for patients with pancreatic cancer,supported by clinical practice guidelines as it has demonstrated good tolerance and good disease control.SBRT opens a possibility of improving outcomes for these patients,both in neoadjuvant treatment and with radical intent.展开更多
Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzhe...Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzheimer s disease.Given the unmet medical need,it is necessary to reevaluate the existing para digms of how to to rget these diseases.When considering neurodegenerative diseases from a systemic neurometabolic perspective,it becomes possible to explain the shared pathological features.This innovative approach presented in this paper draws upon exte nsive research conducted by the authors and researchers worldwide.In this review,we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases.We provide an overview of the risk factors associated with developing neurodegenerative disorders,including genetic,epigenetic,and environmental fa ctors.Additionally,we examine pathological mechanisms implicated in these diseases such as oxidative stress,accumulation of misfolded proteins,inflammation,demyelination,death of neurons,insulin resistance,dysbiosis,and neurotransmitter disturbances.Finally,we outline a proposal for the restoration of mitochondrial metabolism,a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.展开更多
Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the pho...Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.展开更多
Hepatocrinology explores the intricate relationship between liver function and the endocrine system.Chronic liver diseases such as liver cirrhosis can cause endocrine disorders due to toxin accumulation and protein sy...Hepatocrinology explores the intricate relationship between liver function and the endocrine system.Chronic liver diseases such as liver cirrhosis can cause endocrine disorders due to toxin accumulation and protein synthesis disruption.Despite its importance,assessing endocrine issues in cirrhotic patients is frequently neglected.This article provides a comprehensive review of the epidemiology,pathophysiology,diagnosis,and treatment of endocrine disturbances in liver cirrhosis.The review was conducted using the PubMed/Medline,EMBASE,and Scielo databases,encompassing 172 articles.Liver cirrhosis is associated with endocrine disturbances,including diabetes,hypoglycemia,sarcopenia,thyroid dysfunction,hypogonadotropic hypogonadism,bone disease,adrenal insufficiency,growth hormone dysfunction,and secondary hyperaldosteronism.The optimal tools for diagnosing diabetes and detecting hypoglycemia are the oral glucose tolerance test and continuous glucose monitoring system,respectively.Sarcopenia can be assessed through imaging and functional tests,while other endocrine disorders are evaluated using hormonal assays and imaging studies.Treatment options include metformin,glucagon-like peptide-1 analogs,sodium-glucose co-transporter-2 inhibitors,and insulin,which are effective and safe for diabetes control.Established standards are followed for managing hypoglycemia,and hormone replacement therapy is often necessary for other endocrine dysfunctions.Liver transplantation can address some of these problems.展开更多
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel...In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.展开更多
Mineral carbonation is emerging as a reliable CO_(2) capture technology that can mitigate climate change.In lime-treated clayey soils,mineral carbonation occurs through the carbonation of free lime and cementitious pr...Mineral carbonation is emerging as a reliable CO_(2) capture technology that can mitigate climate change.In lime-treated clayey soils,mineral carbonation occurs through the carbonation of free lime and cementitious products derived from pozzolanic reactions.The kinetics of the reactions in lime-treated clayey soils are variable and depend primarily on soil mineralogy.The present study demonstrates the role of soil mineralogy in CO_(2) capture and the subsequent changes caused by carbon mineralization in terms of the unconfined compressive strength(UCS)of lime-treated soils during their service life.Three clayey soils(kaolin,bentonite,and silty clay)with different mineralogical characteristics were treated with 4%lime content,and the samples were cured in a controlled environment for 7 d,90 d,180 d,and 365 d.After the specified curing periods,the samples were exposed to CO_(2) in a carbonation cell for 7 d.The non-carbonated samples purged with N2 gas were used as a benchmark to compare the mechanical,chemical-mineralogical,and microstructure changes caused by carbonation reactions.Experimental investigations indicated that exposure to CO_(2) resulted in an average increase of 10%in the UCS of limetreated bentonite,whereas the strength of lime-treated kaolin and silty clay was reduced by an average of 35%.The chemical and microstructural analyses revealed that the precipitated carbonates effectively filled the macropores of the treated bentonite,compared to the inadequate cementation caused by pozzolanic reactions,resulting in strength enhancement.In contrast,strength loss in lime-treated kaolin and silty clay was attributed to the carbonation of cementitious phases and partly to the tensile stress induced by carbonate precipitation.In terms of carbon mineralization prospects,lime-treated kaolin exhibited maximum carbonation due to the higher availability of unreacted lime.The results suggest that,in addition to the increase in compressive strength,adequate calcium-bearing phases and macropores determine the efficiency of carbon mineralization in lime-treated clayey soils.展开更多
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw...Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.展开更多
Cirrhosis is considered a growing cause of morbidity and mortality,which represents a significant public health problem.Currently,there is no effective treatment to reverse cirrhosis.Treatment primarily centers on add...Cirrhosis is considered a growing cause of morbidity and mortality,which represents a significant public health problem.Currently,there is no effective treatment to reverse cirrhosis.Treatment primarily centers on addressing the underlying liver condition,monitoring,and managing portal hypertension-related complications,and evaluating the potential for liver transplantation in cases of decompensated cirrhosis,marked by rapid progression and the emer-gence of complications like variceal bleeding,hepatic encephalopathy,ascites,malnutrition,and more.Malnutrition,a prevalent complication across all disease stages,is often underdiagnosed in cirrhosis due to the complexities of nutritional assessment in patients with fluid retention and/or obesity,despite its crucial impact on prognosis.Increasing emphasis has been placed on the collaboration of nutritionists within hepatology and Liver transplant teams to deliver compre-hensive care,a practice that has shown to improve outcomes.This review covers appropriate screening and assessment methods for evaluating the nutritional status of this population,diagnostic approaches for malnutrition,and context-specific nutrition treatments.It also discusses evidence-based recommendations for supplementation and physical exercise,both essential elements of the standard care provided to cirrhotic patients.展开更多
The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lyso...The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium,a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development.A crosstalk between primary cilia and autophagy has been established;however,its role in the control of neuronal activity and homeostasis is barely known.In this review,we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons.Then we review the recent literature about specific lipid subclasses in the regulation of autophagy,in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions,specifically focusing on neurons,an area of research that could have major implications in neurodevelopment,energy homeostasis,and neurodegeneration.展开更多
Spinal cord injury(SCI)is a devastating and disabling medical condition generally caused by a traumatic event(primary injury).This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate...Spinal cord injury(SCI)is a devastating and disabling medical condition generally caused by a traumatic event(primary injury).This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage(secondary injury).The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI,explaining the progression and detrimental consequences related to this condition.Psychoneuroimmunoendocrinology(PNIE)is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism,considering the mind and the body as a whole.The initial traumatic event and the consequent neurological disruption trigger immune,endocrine,and multisystem dysfunction,which in turn affect the patient's psyche and well-being.In the present review,we will explore the most important local and systemic consequences of SCI from a PNIE perspective,defining the changes occurring in each system and how all these mechanisms are interconnected.Finally,potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.展开更多
1.Light intensity physical activity(PA)benefits health PA guidelines worldwide recommend that adults accumulate 150 min of moderate intensity or 75 min of vigorous intensity PA(moderate-to-vigorous PA(MVPA))weekly to ...1.Light intensity physical activity(PA)benefits health PA guidelines worldwide recommend that adults accumulate 150 min of moderate intensity or 75 min of vigorous intensity PA(moderate-to-vigorous PA(MVPA))weekly to achieve health benefits.1-3 Absent from these guidelines are recommendations for light intensity PA(LPA,e.g.,walking at a leisurely pace of 3 km/h or less,equivalent to 1.5-2.9 metabolic equivalents).展开更多
基金supported in part by the Ministerio de Ciencia e Innovacion Spain(PID2020-113388RB-I00 to VF and PID2021-124359OB-100 to VMM)Conselleria Educacion Generalitat Valenciana(CIPROM/2021/082 to VF)co-funded with European Regional Development Funds(ERDF)to VF and VMM。
文摘Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation.The cargo of extra cellular vesicles(e.g.,proteins and microRNAs)is altered in pathological situations.Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation,including cance r,diabetes,hype rammonemia and hepatic encephalopathy,and other neurological and neurodegenerative diseases.Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain.This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases.The mechanisms involved are beginning to be unde rstood.For example,increased tumor necrosis factor a in extracellular vesicles from plasma of hype rammonemic rats induces neuroinflammation and motor impairment when injected into normal rats.Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection.In contrast,extra cellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies,by reducing inflammation and neuroinflammation and improving cognitive and motor function.These extra cellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools:they are less immunoge nic,may not diffe rentiate to malignant cells,cross the blood-brain barrier,and may reach more easily target organs.Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury,Alzheimer's and Parkinson's diseases,hyperammonemia,and hepatic encephalopathy.Extracellular vesicles from mesenchymal stem cells modulate the immune system,promoting the shift from a pro-inflammato ry to an anti-inflammatory state.For example,extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance,promoting the anti-inflammatory Treg.Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation,promoting a shift from a pro-inflammatory to an anti-inflammatory state.This reduces neuroinflammation and improves cognitive and motor function.Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-βand miR-124.Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules(e.g.,proteins and mRNAs)involved may help to improve their therapeutic utility.The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies,the therapeutic potential of extra cellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.
基金jointly funded by the Canada Foundation for Innovationthe Alberta Economic Development and Trade organization+1 种基金the University of Calgarysupported by the Canadian Space Agency。
文摘The recently deployed Transition Region Explorer(TREx)-RGB(red-green-blue)all-sky imager(ASI)is designed to capture“true color”images of the aurora and airglow.Because the 557.7 nm green line is usually the brightest emission line in visible auroras,the green channel of a TREx-RGB camera is usually dominated by the 557.7 nm emission.Under this rationale,the TREx mission does not include a specific 557.7 nm imager and is designed to use the RGB green-channel data as a proxy for the 557.7 nm aurora.In this study,we present an initial effort to establish the conversion ratio or formula linking the RGB green-channel data to the absolute intensity of 557.7 nm auroras,which is crucial for quantitative uses of the RGB data.We illustrate two approaches:(1)through a comparison with the collocated measurement of green-line auroras from the TREx spectrograph,and(2)through a comparison with the modeled green-line intensity according to realistic electron precipitation flux measurements from low-Earth-orbit satellites,with the aid of an auroral transport model.We demonstrate the procedures and provide initial results for the TREx-RGB ASIs at the Rabbit Lake and Lucky Lake stations.The RGB response is found to be nonlinear.Empirical conversion ratios or formulas between RGB green-channel data and the green-line auroral intensity are given and can be applied immediately by TREx-RGB data users.The methodology established in this study will also be applicable to the upcoming SMILE ASI mission,which will adopt a similar RGB camera system in its deployment.
基金supported by Instituto de Salud CarlosⅢ(ISCⅢ):PI19/00203cofunded by ERDF+9 种基金"A way to make Europe"to MPVP and DGAP122/00900RD16/0008/0026 co-funded by ERDF"A way to make Europe"to MPVP and RD21/0002/0014financiado porla Unión Europea-NextGenerationEUFundación Robles Chillida to DGARED2018-102499-TPID201 9-106498GB-I00funded by MCIN/AEI/10.13039/501100011 033 to MVSIHU FOReSIGHT[ANR-18-IAHU-0001] to SP
文摘Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.
文摘BACKGROUND Helicobacter pylori(H.pylori)is a widespread microorganism related to gastric adenocarcinoma(AC).In contrast,it has been reported that an inverse association exists between H.pylori infection and esophageal carcinoma.The mechanisms underlying this supposedly protective effect remain controversial.AIM To determine the prevalence of H.pylori infection in esophageal carcinoma patients,we performed a retrospective observational study of esophageal tumors diagnosed in our hospital.METHODS We retrospectively reviewed the prevalence of H.pylori infection in a cohort of patients diagnosed with esophageal carcinoma.Concomitant or previous proton pump inhibitor(PPI)usage was also recorded.RESULTS A total of 89 patients with esophageal carcinoma(69 males,77.5%),with a mean age of 66 years(range,26-93 years)were included.AC was the most frequent pathological variant(n=47,52.8%),followed by squamous cell carcinoma(n=37,41.6%).Fourteen ACs(29.8%)originated in the gastroesophageal junction and 33(70.2%)in the esophageal body.Overall,54 patients(60.7%)presented at stages III and IV.Previous H.pylori infection occurred only in 4 patients(4.5%),3 with AC(6.3%of all ACs)and 1 with squamous cell carcinoma(2.7%of all squamous cell tumors).All patients with previous H.pylori infection had stage III-IV.Only one patient had received prior H.pylori eradication therapy,whereas 86(96.6%)had received previous or concomitant PPI treatment.CONCLUSION In our cohort of patients,and after histologic evaluation of paraffin-embedded primary tumors,we found a very low prevalence of previous H.pylori infection.We also reviewed the medical history of the patients,concluding that the majority had received or were on PPI treatment.The minimal prevalence of H.pylori infection found in this cohort of patients with esophageal carcinoma suggests a protective role.
基金funded by the Spanish Ministry of Economy and Competitiveness,No.PID(2019)-106498GB-100 (to MVS)by the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional"Una manera de hacer Europa",No.PI19/00071 (to MAB)+2 种基金the RETICS subprograms of Spanish Networks OftoRed,Nos.RD16/0008/0026 (to DGB) and RD16/0008/0016 (to DGB)RICORS Terav,No.RD16/0011/0001 (to DGB)from Instituto de Salud CarlosⅢby the Fundacion Seneca,Agencia de Cienciay Tecnologia Región de Murcia,No.19881/GERM/15 (all to MVS)
文摘Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.
文摘Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.
基金supported by the Spanish“Plan Nacional de Investigación Científica,Desarrollo e Innovación Tecnológica,Ministerio de Economía y Competitividad(Instituto de Salud CarlosⅢ)”,Grant FIS PI20-0318 co-financed by“Fondo Europeo de Desarrollo Regional ERDF-FEDER European Union”Grant P18-RT-5059“Plan Andaluz de Investigación,Desarrollo e Innovación(PAIDI 2020),Consejería de Transformación Económica,Industria,Conocimiento y Universidades,Junta de Andalucía,Espana”(all to VC)Grant PPJIA202219“Ayudas del plan propio UGR 2022,Plan propio de investigación y transferencia,Universidad de Granada,Espana”(to JCA andóDGG)。
文摘The myelin sheath is a lipoprotein-rich,multilayered structure capable of increasing conduction velocity in central and peripheral myelinated nerve fibers.Due to the complex structure and composition of myelin,various histological techniques have been developed over the centuries to evaluate myelin under normal,pathological or experimental conditions.Today,methods to assess myelin integrity or content are key tools in both clinical diagnosis and neuroscience research.In this review,we provide an updated summary of the composition and structure of the myelin sheath and discuss some histological procedures,from tissue fixation and processing techniques to the most used and practical myelin histological staining methods.Considering the lipoprotein nature of myelin,the main features and technical details of the different available methods that can be used to evaluate the lipid or protein components of myelin are described,as well as the precise ultrastructural techniques.
文摘Coronavirus disease 2019(COVID-19),caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome,multiple organ failure,and death.Despite extensive studies on the pathogenicity of SARS-CoV-2,its impact on the hepatobiliary system remains unclear.While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels,the exact source of this damage is not fully understood.Proposed mechanisms for injury include direct cytotoxicity,collateral damage from inflammation,drug-induced liver injury,and ischemia/hypoxia.However,evidence often relies on blood tests with liver enzyme abnormalities.In this comprehensive review,we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients,drawing from liver biopsies,complete autopsies,and in vitro liver analyses.We present evidence of the direct impact of SARS-CoV-2 on the liver,substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes,including mitochondrial swelling,endoplasmic reticulum dilatation,and hepatocyte apoptosis.Additional ly,we describe the diverse liver pathology observed during COVID-19 infection,encompassing necrosis,steatosis,cholestasis,and lobular inflammation.We also discuss the emergence of long-term complications,notably COVID-19-related secondary sclerosing cholangitis.Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.
基金supported in part by the National Natural Science Foundation of China(62371116 and 62231020)in part by the Science and Technology Project of Hebei Province Education Department(ZD2022164)+2 种基金in part by the Fundamental Research Funds for the Central Universities(N2223031)in part by the Open Research Project of Xidian University(ISN24-08)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology,China,CRKL210203)。
文摘High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.
文摘Background:Stereotactic body radiotherapy(SBRT)in pancreatic cancer allows high delivery of radiation doses on tumors without affecting surrounding tissue.This review aimed at the SBRT application in the treatment of pancreatic cancer.Data sources:We retrieved articles published in MEDLINE/PubMed from January 2017 to December 2022.Keywords used in the search included:“pancreatic adenocarcinoma”OR“pancreatic cancer”AND“stereotactic ablative radiotherapy(SABR)”OR“stereotactic body radiotherapy(SBRT)”OR“chemoradiotherapy(CRT)”.English language articles with information on technical characteristics,doses and fractionation,indications,recurrence patterns,local control and toxicities of SBRT in pancreatic tumors were included.All articles were assessed for validity and relevant content.Results:Optimal doses and fractionation have not yet been defined.However,SBRT could be the standard treatment in patients with pancreatic adenocarcinoma in addition to CRT.Furthermore,the combination of SBRT with chemotherapy may have additive or synergic effect on pancreatic adenocarcinoma.Conclusions:SBRT is an effective modality for patients with pancreatic cancer,supported by clinical practice guidelines as it has demonstrated good tolerance and good disease control.SBRT opens a possibility of improving outcomes for these patients,both in neoadjuvant treatment and with radical intent.
文摘Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzheimer s disease.Given the unmet medical need,it is necessary to reevaluate the existing para digms of how to to rget these diseases.When considering neurodegenerative diseases from a systemic neurometabolic perspective,it becomes possible to explain the shared pathological features.This innovative approach presented in this paper draws upon exte nsive research conducted by the authors and researchers worldwide.In this review,we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases.We provide an overview of the risk factors associated with developing neurodegenerative disorders,including genetic,epigenetic,and environmental fa ctors.Additionally,we examine pathological mechanisms implicated in these diseases such as oxidative stress,accumulation of misfolded proteins,inflammation,demyelination,death of neurons,insulin resistance,dysbiosis,and neurotransmitter disturbances.Finally,we outline a proposal for the restoration of mitochondrial metabolism,a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
基金supported by the European Regional Development Funds-European Union(ERDF-EU),FATZHEIMER project(EU-LAC HEALTH 2020,16/T010131 to FRdF),“Una manera de hacer Europa”Ministerio de Economía,Industria y Competitividad,Gobierno de Espa?a,Programa Estatal de Investigación,Desarrollo e Innovación Orientada a los Retos de la Sociedad(RTC2019-007329-1 to FRdF)+2 种基金Consejería de Economía,Conocimiento y Universidad,Junta de Andalucía,Plan Andaluz de Investigación,Desarrollo e Innovación(P18TP-5194 to FRdF)Instituto de Salud CarlosⅢ(DTS22/00021 to FRdF)DMV(FI20/00227)holds a“PFIS’’predoctoral contract from the National System of Health,EU-ERDF-Instituto de Salud CarlosⅢ。
文摘Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
文摘Hepatocrinology explores the intricate relationship between liver function and the endocrine system.Chronic liver diseases such as liver cirrhosis can cause endocrine disorders due to toxin accumulation and protein synthesis disruption.Despite its importance,assessing endocrine issues in cirrhotic patients is frequently neglected.This article provides a comprehensive review of the epidemiology,pathophysiology,diagnosis,and treatment of endocrine disturbances in liver cirrhosis.The review was conducted using the PubMed/Medline,EMBASE,and Scielo databases,encompassing 172 articles.Liver cirrhosis is associated with endocrine disturbances,including diabetes,hypoglycemia,sarcopenia,thyroid dysfunction,hypogonadotropic hypogonadism,bone disease,adrenal insufficiency,growth hormone dysfunction,and secondary hyperaldosteronism.The optimal tools for diagnosing diabetes and detecting hypoglycemia are the oral glucose tolerance test and continuous glucose monitoring system,respectively.Sarcopenia can be assessed through imaging and functional tests,while other endocrine disorders are evaluated using hormonal assays and imaging studies.Treatment options include metformin,glucagon-like peptide-1 analogs,sodium-glucose co-transporter-2 inhibitors,and insulin,which are effective and safe for diabetes control.Established standards are followed for managing hypoglycemia,and hormone replacement therapy is often necessary for other endocrine dysfunctions.Liver transplantation can address some of these problems.
基金supported in part by the Natural Science Youth Foundation of Hebei Province under Grant F2019403207in part by the PhD Research Startup Foundation of Hebei GEO University under Grant BQ2019055+3 种基金in part by the Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP-2021A06in part by the Fundamental Research Funds for the Universities in Hebei Province under Grant QN202220in part by the Science and Technology Research Project for Universities of Hebei under Grant ZD2020344in part by the Guangxi Natural Science Fund General Project under Grant 2021GXNSFAA075029.
文摘In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.
基金partial financial support by the Women Leading IITM,IIT Madras,Chennai,India.
文摘Mineral carbonation is emerging as a reliable CO_(2) capture technology that can mitigate climate change.In lime-treated clayey soils,mineral carbonation occurs through the carbonation of free lime and cementitious products derived from pozzolanic reactions.The kinetics of the reactions in lime-treated clayey soils are variable and depend primarily on soil mineralogy.The present study demonstrates the role of soil mineralogy in CO_(2) capture and the subsequent changes caused by carbon mineralization in terms of the unconfined compressive strength(UCS)of lime-treated soils during their service life.Three clayey soils(kaolin,bentonite,and silty clay)with different mineralogical characteristics were treated with 4%lime content,and the samples were cured in a controlled environment for 7 d,90 d,180 d,and 365 d.After the specified curing periods,the samples were exposed to CO_(2) in a carbonation cell for 7 d.The non-carbonated samples purged with N2 gas were used as a benchmark to compare the mechanical,chemical-mineralogical,and microstructure changes caused by carbonation reactions.Experimental investigations indicated that exposure to CO_(2) resulted in an average increase of 10%in the UCS of limetreated bentonite,whereas the strength of lime-treated kaolin and silty clay was reduced by an average of 35%.The chemical and microstructural analyses revealed that the precipitated carbonates effectively filled the macropores of the treated bentonite,compared to the inadequate cementation caused by pozzolanic reactions,resulting in strength enhancement.In contrast,strength loss in lime-treated kaolin and silty clay was attributed to the carbonation of cementitious phases and partly to the tensile stress induced by carbonate precipitation.In terms of carbon mineralization prospects,lime-treated kaolin exhibited maximum carbonation due to the higher availability of unreacted lime.The results suggest that,in addition to the increase in compressive strength,adequate calcium-bearing phases and macropores determine the efficiency of carbon mineralization in lime-treated clayey soils.
基金The authors are grateful for the financial support from National Natural Science Foundation of China(32001728).
文摘Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.
文摘Cirrhosis is considered a growing cause of morbidity and mortality,which represents a significant public health problem.Currently,there is no effective treatment to reverse cirrhosis.Treatment primarily centers on addressing the underlying liver condition,monitoring,and managing portal hypertension-related complications,and evaluating the potential for liver transplantation in cases of decompensated cirrhosis,marked by rapid progression and the emer-gence of complications like variceal bleeding,hepatic encephalopathy,ascites,malnutrition,and more.Malnutrition,a prevalent complication across all disease stages,is often underdiagnosed in cirrhosis due to the complexities of nutritional assessment in patients with fluid retention and/or obesity,despite its crucial impact on prognosis.Increasing emphasis has been placed on the collaboration of nutritionists within hepatology and Liver transplant teams to deliver compre-hensive care,a practice that has shown to improve outcomes.This review covers appropriate screening and assessment methods for evaluating the nutritional status of this population,diagnostic approaches for malnutrition,and context-specific nutrition treatments.It also discusses evidence-based recommendations for supplementation and physical exercise,both essential elements of the standard care provided to cirrhotic patients.
基金funded by grants from Fondo Nacional de Desarrollo Científico y Tecnológico,FONDECYT 1200499 to EM,11200592 to MJY,1211329 to ACby the ANID PIA ACT172066 to EM and AC+3 种基金by the ANID postdoctoral fellowship 3210630 to MPHCby the ANID doctoral fellowship 21230122 to DPNby the ANID doctoral fellowship 21211189 to PRby the ANID doctoral fellowship by the ANID doctoral fellowship 21210611 to FDC。
文摘The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium,a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development.A crosstalk between primary cilia and autophagy has been established;however,its role in the control of neuronal activity and homeostasis is barely known.In this review,we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons.Then we review the recent literature about specific lipid subclasses in the regulation of autophagy,in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions,specifically focusing on neurons,an area of research that could have major implications in neurodevelopment,energy homeostasis,and neurodegeneration.
基金funded by grants from the Fondo de Investigacion de la Seguridad Social(Spain)(FIS PI-14/01935)the Spanish Ministerio de Ciencia y Tecnologia+4 种基金Instituto de Salud Carlos III(PI051871,CIBERehd)the Spanish Ministerio de Economia y Competitividad(SAF2017-86343-R)the Comunidad de Madrid(P2022/BMD-7321)HALEKULANY S.L.PROACAPITAL and MJR.
文摘Spinal cord injury(SCI)is a devastating and disabling medical condition generally caused by a traumatic event(primary injury).This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage(secondary injury).The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI,explaining the progression and detrimental consequences related to this condition.Psychoneuroimmunoendocrinology(PNIE)is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism,considering the mind and the body as a whole.The initial traumatic event and the consequent neurological disruption trigger immune,endocrine,and multisystem dysfunction,which in turn affect the patient's psyche and well-being.In the present review,we will explore the most important local and systemic consequences of SCI from a PNIE perspective,defining the changes occurring in each system and how all these mechanisms are interconnected.Finally,potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.
文摘1.Light intensity physical activity(PA)benefits health PA guidelines worldwide recommend that adults accumulate 150 min of moderate intensity or 75 min of vigorous intensity PA(moderate-to-vigorous PA(MVPA))weekly to achieve health benefits.1-3 Absent from these guidelines are recommendations for light intensity PA(LPA,e.g.,walking at a leisurely pace of 3 km/h or less,equivalent to 1.5-2.9 metabolic equivalents).