Haptic is the modality that complements traditional multimedia,i.e.,audiovisual,to evolve the next wave of innovation at which the Internet data stream can be exchanged to enable remote skills and control applications...Haptic is the modality that complements traditional multimedia,i.e.,audiovisual,to evolve the next wave of innovation at which the Internet data stream can be exchanged to enable remote skills and control applications.This will require ultra-low latency and ultra-high reliability to evolve the mobile experience into the era of Digital Twin and Tactile Internet.While the 5th generation of mobile networks is not yet widely deployed,Long-Term Evolution(LTE-A)latency remains much higher than the 1 ms requirement for the Tactile Internet and therefore the Digital Twin.This work investigates an interesting solution based on the incorporation of Software-defined networking(SDN)and Multi-access Mobile Edge Computing(MEC)technologies in an LTE-A network,to deliver future multimedia applications over the Tactile Internet while overcoming the QoS challenges.Several network scenarios were designed and simulated using Riverbed modeler and the performance was evaluated using several time-related Key Performance Indicators(KPIs)such as throughput,End-2-End(E2E)delay,and jitter.The best scenario possible is clearly the one integrating MEC and SDN approaches,where the overall delay,jitter,and throughput for haptics-attained 2 ms,0.01 ms,and 1000 packets per second.The results obtained give clear evidence that the integration of,both SDN and MEC,in LTE-A indicates performance improvement,and fulfills the standard requirements in terms of the above KPIs,for realizing a Digital Twin/Tactile Internet-based system.展开更多
The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to atte...The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.展开更多
With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges su...With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges such as slow updates,usability issues,and limited installation methods.These challenges hinder the adoption and practicality of these tools.This paper examines smart contract vulnerability detection tools from 2016 to 2023,sourced from the Web of Science(WOS)and Google Scholar.By systematically collecting,screening,and synthesizing relevant research,38 open-source tools that provide installation methods were selected for further investigation.From a developer’s perspective,this paper offers a comprehensive survey of these 38 open-source tools,discussing their operating principles,installation methods,environmental dependencies,update frequencies,and installation challenges.Based on this,we propose an Ethereum smart contract vulnerability detection framework.This framework enables developers to easily utilize various detection tools and accurately analyze contract security issues.To validate the framework’s stability,over 1700 h of testing were conducted.Additionally,a comprehensive performance test was performed on the mainstream detection tools integrated within the framework,assessing their hardware requirements and vulnerability detection coverage.Experimental results indicate that the Slither tool demonstrates satisfactory performance in terms of system resource consumption and vulnerability detection coverage.This study represents the first performance evaluation of testing tools in this domain,providing significant reference value.展开更多
In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signal...In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.展开更多
In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of sate...In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.展开更多
Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personalinformation, such as age, gender, occupation, and education, based on various linguistic features, e.g....Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personalinformation, such as age, gender, occupation, and education, based on various linguistic features, e.g., stylistic,semantic, and syntactic. The importance of AP lies in various fields, including forensics, security, medicine, andmarketing. In previous studies, many works have been done using different languages, e.g., English, Arabic, French,etc.However, the research on RomanUrdu is not up to the mark.Hence, this study focuses on detecting the author’sage and gender based on Roman Urdu text messages. The dataset used in this study is Fire’18-MaponSMS. Thisstudy proposed an ensemble model based on AdaBoostM1 and Random Forest (AMBRF) for AP using multiplelinguistic features that are stylistic, character-based, word-based, and sentence-based. The proposed model iscontrasted with several of the well-known models fromthe literature, including J48-Decision Tree (J48),Na飗e Bays(NB), K Nearest Neighbor (KNN), and Composite Hypercube on Random Projection (CHIRP), NB-Updatable,RF, and AdaboostM1. The overall outcome shows the better performance of the proposed AdaboostM1 withRandom Forest (ABMRF) with an accuracy of 54.2857% for age prediction and 71.1429% for gender predictioncalculated on stylistic features. Regarding word-based features, age and gender were considered in 50.5714% and60%, respectively. On the other hand, KNN and CHIRP show the weakest performance using all the linguisticfeatures for age and gender prediction.展开更多
Tomato(Solanum lycopersicum), an economically important vegetable crop cultivated worldwide, often suffers massive financial losses due to Phytophthora infestans(P. infestans) spread and breakouts. Arbuscular mycorrhi...Tomato(Solanum lycopersicum), an economically important vegetable crop cultivated worldwide, often suffers massive financial losses due to Phytophthora infestans(P. infestans) spread and breakouts. Arbuscular mycorrhiza(AM) fungi mediated biocontrol has demonstrated great potential in plant resistance. However, little information is available on the regulation of mycorrhizal tomato resistance against P. infestans.Therefore, microRNAs(miRNAs) sequencing technology was used to analyse miRNA and their targets in the mycorrhizal tomato after P.infestans infection. Our study showed a lower severity of necrotic lesions in mycorrhizal tomato than in nonmycorrhizal controls. We investigated 35 miRNAs that showed the opposite expression tendency in mycorrhizal and nonmycorrhizal tomato after P. infestans infection when compared with uninfected P. infestans. Among them, miR319c was upregulated in mycorrhizal tomato leaves after pathogen infection. Overexpression of miR319c or silencing of its target gene(TCP1) increased tomato resistance to P. infestans, implying that miR319c acts as a positive regulator in tomato after pathogen infection. Additionally, we examined the induced expression patterns of miR319c and TCP1 in tomato plants exposed to salicylic acid(SA) treatment, and SA content and the expression levels of SA-related genes were also measured in overexpressing transgenic plants. The result revealed that miR319c can not only participates in tomato resistance to P. infestans by regulating SA content, but also indirectly regulates the expression levels of key genes in the SA pathway by regulating TCP1. In this study, we propose a novel mechanism in which the miR319c in mycorrhizal tomato increases resistance to P. infestans.展开更多
The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human re...The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional requirements.To address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human effort.However,existing techniques often struggle with complex instructions and large-scale projects.In our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer trees.Experimental results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT dataset.Both datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse scenarios.These findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes.展开更多
In the case of massive data,matrix operations are very computationally intensive,and the memory limitation in standalone mode leads to the system inefficiencies.At the same time,it is difficult for matrix operations t...In the case of massive data,matrix operations are very computationally intensive,and the memory limitation in standalone mode leads to the system inefficiencies.At the same time,it is difficult for matrix operations to achieve flexible switching between different requirements when implemented in hardware.To address this problem,this paper proposes a matrix operation accelerator based on reconfigurable arrays in the context of the application of recommender systems(RS).Based on the reconfigurable array processor(APR-16)with reconfiguration,a parallelized design of matrix operations on processing element(PE)array is realized with flexibility.The experimental results show that,compared with the proposed central processing unit(CPU)and graphics processing unit(GPU)hybrid implementation matrix multiplication framework,the energy efficiency ratio of the accelerator proposed in this paper is improved by about 35×.Compared with blocked alternating least squares(BALS),its the energy efficiency ratio has been accelerated by about 1×,and the switching of matrix factorization(MF)schemes suitable for different sparsity can be realized.展开更多
[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[...[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[Methods]A combination of field research,literature review,and policy analysis was employed to identify key factors affecting farmers livelihoods and potential strategies for transformation.[Results]The study found that developing ecological agriculture and modern agriculture,promoting agricultural transformation and upgrading,cultivating alternative industries,strengthening ecological engineering construction,and establishing diversified ecological compensation methods and supporting policies are effective strategies for transforming farmers livelihoods.[Conclusions]Implementing these strategies can help alleviate the contradiction between ecological protection and farmers livelihood development,promoting coordinated development of both.This approach not only benefits farmers but also contributes to sustainable environmental management and biodiversity conservation.展开更多
Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so t...Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.展开更多
Wireless ultraviolet communication is a new type of communication mode. It refers to the transmission of information through the scattering of ultraviolet light by atmospheric particles and aerosol particles. The scat...Wireless ultraviolet communication is a new type of communication mode. It refers to the transmission of information through the scattering of ultraviolet light by atmospheric particles and aerosol particles. The scattering characteristics can enable the wireless ultraviolet communication system to transmit ultraviolet light signals in a non-line-of-sight manner, which overcomes the weakness that other free space optical communications must work in a line-of-sight manner. Based on the basic theory of scattering and absorption in atmospheric optics, taking the ultraviolet light with a wavelength of 266 nm as an example, this paper introduces the classical model of non-line-of-sight single-scattering coplanarity based on the ellipsoid coordinate system. The model is used to simulate and analyze the relationship between the geometric parameters such as transmission distance, transceiver elevation angle and transceiver half-angle and the received optical power per unit area. The performance of non-line-of-sight ultraviolet communication system in rain and fog environment is discussed respectively. The results show that the transmission quality of non-line-of-sight ultraviolet atmospheric propagation is greatly affected by the communication distance. As the distance increases, the received light power per unit area gradually decreases. In addition, increasing the emission elevation angle, the receiving elevation angle and the receiving half angle is an important way to improve the system performance.展开更多
This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constrain...This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development.展开更多
In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy...In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.展开更多
In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to in...In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.展开更多
With the development of urbanization,the problem of neurological diseases brought about by population aging has gradually become a social problem of worldwide concern.Aging leads to gradual degeneration of the central...With the development of urbanization,the problem of neurological diseases brought about by population aging has gradually become a social problem of worldwide concern.Aging leads to gradual degeneration of the central nervous system,shrinkage of brain tissue,and decline in physical function in many elderlies,making them susceptible to neurological diseases such as Alzheimer’s disease(AD),stroke,Parkinson’s and major depressive disorder(MDD).Due to the influence of these neurological diseases,the elderly have troubles such as memory loss,inability to move,falling,and getting lost,which seriously affect their quality of life.Tracking and positioning of elderly with neurological diseases and keeping track of their location in real-time are necessary and crucial in order to detect and treat dangerous and unexpected situations in time.Considering that the elderly with neurological diseases forget to wear a positioning device or have mobility problems due to carrying a positioning device,device-free positioning as a passive positioning technology that detects device-free individuals is more suitable than traditional active positioning for the home-based care of the elderly with neurological diseases.This paper provides an extensive and in-depth survey of device-free indoor positioning technology for home-based care and an in-depth analysis of the main features of current positioning systems,as well as the techniques,technologies andmethods they employ,fromthe perspective of the needs of the elderly with neurological conditions.Moreover,evaluation criteria and possible solutions of positioning techniques for the home-based care of the elderly with neurological conditions are proposed.Finally,the opportunities and challenges for the development of indoor positioning technology in 6G mobile networks for home-based care of the elderly with neurological diseases are discussed.This review has provided comprehensive and effective tracking and positioning techniques,technologies and methods for the elderly,by which we can obtain the location information of the elderly in real-time and make home-based care more comfortable and safer for the elderly with neurological diseases.展开更多
Electroencephalogram(EEG) signals contain important information about the regulation of brain system. Thus, automatic detection of epilepsy by analyzing the characteristics obtained from EEG signals has important rese...Electroencephalogram(EEG) signals contain important information about the regulation of brain system. Thus, automatic detection of epilepsy by analyzing the characteristics obtained from EEG signals has important research implications in the field of clinical medicine. In this paper, the horizontal visibility graph(HVG) algorithm is used to map multifractal EEG signals into complex networks. Then, we study the structure of the networks and explore the nonlinear dynamics properties of the EEG signals inherited from these networks. In order to better describe complex brain behaviors, we use the angle between two connected nodes as the edge weight of the network and construct the weighted horizontal visibility graph(WHVG). In our studies, fractality and multifractality of WHVG are innovatively used to analyze the structure of related networks. However, these methods only analyze the reconstructed dynamical system in general characterizations,they are not sufficient to describe the complex behavior and cannot provide a comprehensive picture of the system. To this effect, we propose an improved multiscale multifractal analysis(MMA) for network, which extends the description of the network dynamics features by focusing on the relationship between the multifractality and the measured scale-free intervals.Furthermore, neural networks are applied to train the above-mentioned parameters for the classification and identification of three kinds of EEG signals, i.e., health, interictal phase, and ictal phase. By evaluating our experimental results, the classification accuracy is 99.0%, reflecting the effectiveness of the WHVG algorithm in extracting the potential dynamic characteristics of EEG signals.展开更多
In a wide variety of mechanical and industrial applications,e.g.,space cooling,nuclear reactor cooling,medicinal utilizations(magnetic drug targeting),energy generation,and heat conduction in tissues,the heat transfer...In a wide variety of mechanical and industrial applications,e.g.,space cooling,nuclear reactor cooling,medicinal utilizations(magnetic drug targeting),energy generation,and heat conduction in tissues,the heat transfer phenomenon is involved.Fourier’s law of heat conduction has been used as the foundation for predicting the heat transfer behavior in a variety of real-world contexts.This model’s production of a parabolic energy expression,which means that an initial disturbance would immediately affect the system under investigation,is one of its main drawbacks.Therefore,numerous researchers worked on such problem to resolve this issue.At last,this problem was resolved by Cattaneo by adding relaxation time for heat flux in Fourier’s law,which was defined as the time required to establish steady heat conduction once a temperature gradient is imposed.Christov offered a material invariant version of Cattaneo’s model by taking into account the upper-connected derivative of the Oldroyd model.Nowadays,both models are combinedly known as the Cattaneo-Christov(CC)model.In this attempt,the mixed convective MHD Falkner-Skan Sutterby nanofluid flow is addressed towards a wedge surface in the presence of the variable external magnetic field.The CC model is incorporated instead of Fourier’s law for the examination of heat transfer features in the energy expression.A two-phase nanofluid model is utilized for the implementation of nano-concept.The nonlinear system of equations is tackled through the bvp4c technique in the MATLAB software 2016.The influence of pertinent flow parameters is discussed and displayed through different sketches.Major and important results are summarized in the conclusion section.Furthermore,in both cases of wall-through flow(i.e.,suction and injection effects),the porosity parameters increase the flow speed,and decrease the heat transport and the influence of drag forces.展开更多
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually limited.To enrich the services in mobile communications,developers have combin...A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually limited.To enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a mashup.The emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of mashups.Such a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage data.Thus,the question of how to determine the most suitable mashups from big data has become a challenging problem.In this paper,we propose a mashup recommendation framework from big data in mobile networks and the IoT.The proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix factorization.We employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the mashups.We also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization algorithm.We then crawl through a real-world large mashup dataset and perform experiments.The experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.展开更多
Task offloading is an important concept for edge computing and the Internet of Things(IoT)because computationintensive tasksmust beoffloaded tomore resource-powerful remote devices.Taskoffloading has several advantage...Task offloading is an important concept for edge computing and the Internet of Things(IoT)because computationintensive tasksmust beoffloaded tomore resource-powerful remote devices.Taskoffloading has several advantages,including increased battery life,lower latency,and better application performance.A task offloading method determines whether sections of the full application should be run locally or offloaded for execution remotely.The offloading choice problem is influenced by several factors,including application properties,network conditions,hardware features,and mobility,influencing the offloading system’s operational environment.This study provides a thorough examination of current task offloading and resource allocation in edge computing,covering offloading strategies,algorithms,and factors that influence offloading.Full offloading and partial offloading strategies are the two types of offloading strategies.The algorithms for task offloading and resource allocation are then categorized into two parts:machine learning algorithms and non-machine learning algorithms.We examine and elaborate on algorithms like Supervised Learning,Unsupervised Learning,and Reinforcement Learning(RL)under machine learning.Under the non-machine learning algorithm,we elaborate on algorithms like non(convex)optimization,Lyapunov optimization,Game theory,Heuristic Algorithm,Dynamic Voltage Scaling,Gibbs Sampling,and Generalized Benders Decomposition(GBD).Finally,we highlight and discuss some research challenges and issues in edge computing.展开更多
文摘Haptic is the modality that complements traditional multimedia,i.e.,audiovisual,to evolve the next wave of innovation at which the Internet data stream can be exchanged to enable remote skills and control applications.This will require ultra-low latency and ultra-high reliability to evolve the mobile experience into the era of Digital Twin and Tactile Internet.While the 5th generation of mobile networks is not yet widely deployed,Long-Term Evolution(LTE-A)latency remains much higher than the 1 ms requirement for the Tactile Internet and therefore the Digital Twin.This work investigates an interesting solution based on the incorporation of Software-defined networking(SDN)and Multi-access Mobile Edge Computing(MEC)technologies in an LTE-A network,to deliver future multimedia applications over the Tactile Internet while overcoming the QoS challenges.Several network scenarios were designed and simulated using Riverbed modeler and the performance was evaluated using several time-related Key Performance Indicators(KPIs)such as throughput,End-2-End(E2E)delay,and jitter.The best scenario possible is clearly the one integrating MEC and SDN approaches,where the overall delay,jitter,and throughput for haptics-attained 2 ms,0.01 ms,and 1000 packets per second.The results obtained give clear evidence that the integration of,both SDN and MEC,in LTE-A indicates performance improvement,and fulfills the standard requirements in terms of the above KPIs,for realizing a Digital Twin/Tactile Internet-based system.
基金Project support by the National Natural Science Foundation of China(Grant Nos.11704044 and 12074140)。
文摘The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.
基金supported by the Major Public Welfare Special Fund of Henan Province(No.201300210200)the Major Science and Technology Research Special Fund of Henan Province(No.221100210400).
文摘With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges such as slow updates,usability issues,and limited installation methods.These challenges hinder the adoption and practicality of these tools.This paper examines smart contract vulnerability detection tools from 2016 to 2023,sourced from the Web of Science(WOS)and Google Scholar.By systematically collecting,screening,and synthesizing relevant research,38 open-source tools that provide installation methods were selected for further investigation.From a developer’s perspective,this paper offers a comprehensive survey of these 38 open-source tools,discussing their operating principles,installation methods,environmental dependencies,update frequencies,and installation challenges.Based on this,we propose an Ethereum smart contract vulnerability detection framework.This framework enables developers to easily utilize various detection tools and accurately analyze contract security issues.To validate the framework’s stability,over 1700 h of testing were conducted.Additionally,a comprehensive performance test was performed on the mainstream detection tools integrated within the framework,assessing their hardware requirements and vulnerability detection coverage.Experimental results indicate that the Slither tool demonstrates satisfactory performance in terms of system resource consumption and vulnerability detection coverage.This study represents the first performance evaluation of testing tools in this domain,providing significant reference value.
基金supported by National Natural Science Foundation of China (62171390)Central Universities of Southwest Minzu University (ZYN2022032,2023NYXXS034)the State Scholarship Fund of the China Scholarship Council (NO.202008510081)。
文摘In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.
基金supported in part by the National Natural Science Foundation of China under Grant No.U2268204,62172061 and 61871422National Key R&D Program of China under Grant No.2020YFB1711800 and 2020YFB1707900+2 种基金the Science and Technology Project of Sichuan Province under Grant No.2023ZHCG0014,2023ZHCG0011,2022YFG0155,2022YFG0157,2021GFW019,2021YFG0152,2021YFG0025,2020YFG0322Central Universities of Southwest Minzu University under Grant No.ZYN2022032,2023NYXXS034the State Scholarship Fund of the China Scholarship Council under Grant No.202008510081。
文摘In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.
基金the support of Prince Sultan University for the Article Processing Charges(APC)of this publication。
文摘Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personalinformation, such as age, gender, occupation, and education, based on various linguistic features, e.g., stylistic,semantic, and syntactic. The importance of AP lies in various fields, including forensics, security, medicine, andmarketing. In previous studies, many works have been done using different languages, e.g., English, Arabic, French,etc.However, the research on RomanUrdu is not up to the mark.Hence, this study focuses on detecting the author’sage and gender based on Roman Urdu text messages. The dataset used in this study is Fire’18-MaponSMS. Thisstudy proposed an ensemble model based on AdaBoostM1 and Random Forest (AMBRF) for AP using multiplelinguistic features that are stylistic, character-based, word-based, and sentence-based. The proposed model iscontrasted with several of the well-known models fromthe literature, including J48-Decision Tree (J48),Na飗e Bays(NB), K Nearest Neighbor (KNN), and Composite Hypercube on Random Projection (CHIRP), NB-Updatable,RF, and AdaboostM1. The overall outcome shows the better performance of the proposed AdaboostM1 withRandom Forest (ABMRF) with an accuracy of 54.2857% for age prediction and 71.1429% for gender predictioncalculated on stylistic features. Regarding word-based features, age and gender were considered in 50.5714% and60%, respectively. On the other hand, KNN and CHIRP show the weakest performance using all the linguisticfeatures for age and gender prediction.
基金supported by the National Natural Science Foundation of China (Grant Nos.32230091,32072592)。
文摘Tomato(Solanum lycopersicum), an economically important vegetable crop cultivated worldwide, often suffers massive financial losses due to Phytophthora infestans(P. infestans) spread and breakouts. Arbuscular mycorrhiza(AM) fungi mediated biocontrol has demonstrated great potential in plant resistance. However, little information is available on the regulation of mycorrhizal tomato resistance against P. infestans.Therefore, microRNAs(miRNAs) sequencing technology was used to analyse miRNA and their targets in the mycorrhizal tomato after P.infestans infection. Our study showed a lower severity of necrotic lesions in mycorrhizal tomato than in nonmycorrhizal controls. We investigated 35 miRNAs that showed the opposite expression tendency in mycorrhizal and nonmycorrhizal tomato after P. infestans infection when compared with uninfected P. infestans. Among them, miR319c was upregulated in mycorrhizal tomato leaves after pathogen infection. Overexpression of miR319c or silencing of its target gene(TCP1) increased tomato resistance to P. infestans, implying that miR319c acts as a positive regulator in tomato after pathogen infection. Additionally, we examined the induced expression patterns of miR319c and TCP1 in tomato plants exposed to salicylic acid(SA) treatment, and SA content and the expression levels of SA-related genes were also measured in overexpressing transgenic plants. The result revealed that miR319c can not only participates in tomato resistance to P. infestans by regulating SA content, but also indirectly regulates the expression levels of key genes in the SA pathway by regulating TCP1. In this study, we propose a novel mechanism in which the miR319c in mycorrhizal tomato increases resistance to P. infestans.
基金This work is supported by EIAS(Emerging Intelligent Autonomous Systems)Data Science Lab,Prince Sultan University,Kingdom of Saudi Arabia,by paying the APC.
文摘The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional requirements.To address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human effort.However,existing techniques often struggle with complex instructions and large-scale projects.In our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer trees.Experimental results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT dataset.Both datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse scenarios.These findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes.
基金the National Key R&D Program of China(No.2022ZD0119001)the National Natural Science Foundation of China(No.61834005)+3 种基金the Shaanxi Province Key R&D Plan(No.2022GY-027)the Key Scientific Research Project of Shaanxi Department of Education(No.22JY060)the Education Research Project of Xi'an University of Posts and Telecommunications(No.JGA202108)the Graduate Student Innovation Fund of Xi’an University of Posts and Telecommunications(No.CXJJYL2022035).
文摘In the case of massive data,matrix operations are very computationally intensive,and the memory limitation in standalone mode leads to the system inefficiencies.At the same time,it is difficult for matrix operations to achieve flexible switching between different requirements when implemented in hardware.To address this problem,this paper proposes a matrix operation accelerator based on reconfigurable arrays in the context of the application of recommender systems(RS).Based on the reconfigurable array processor(APR-16)with reconfiguration,a parallelized design of matrix operations on processing element(PE)array is realized with flexibility.The experimental results show that,compared with the proposed central processing unit(CPU)and graphics processing unit(GPU)hybrid implementation matrix multiplication framework,the energy efficiency ratio of the accelerator proposed in this paper is improved by about 35×.Compared with blocked alternating least squares(BALS),its the energy efficiency ratio has been accelerated by about 1×,and the switching of matrix factorization(MF)schemes suitable for different sparsity can be realized.
基金Supported by 2024 General Project of Guangdong Provincial Philosophy and Social Science Planning(GD24CGL18).
文摘[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[Methods]A combination of field research,literature review,and policy analysis was employed to identify key factors affecting farmers livelihoods and potential strategies for transformation.[Results]The study found that developing ecological agriculture and modern agriculture,promoting agricultural transformation and upgrading,cultivating alternative industries,strengthening ecological engineering construction,and establishing diversified ecological compensation methods and supporting policies are effective strategies for transforming farmers livelihoods.[Conclusions]Implementing these strategies can help alleviate the contradiction between ecological protection and farmers livelihood development,promoting coordinated development of both.This approach not only benefits farmers but also contributes to sustainable environmental management and biodiversity conservation.
基金supported in part by National Natural Science Foundation of China under Grant Nos.61971029 and U22B2004in part by Beijing Municipal Natural Science Foundation under Grant No.L222002.
文摘Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.
文摘Wireless ultraviolet communication is a new type of communication mode. It refers to the transmission of information through the scattering of ultraviolet light by atmospheric particles and aerosol particles. The scattering characteristics can enable the wireless ultraviolet communication system to transmit ultraviolet light signals in a non-line-of-sight manner, which overcomes the weakness that other free space optical communications must work in a line-of-sight manner. Based on the basic theory of scattering and absorption in atmospheric optics, taking the ultraviolet light with a wavelength of 266 nm as an example, this paper introduces the classical model of non-line-of-sight single-scattering coplanarity based on the ellipsoid coordinate system. The model is used to simulate and analyze the relationship between the geometric parameters such as transmission distance, transceiver elevation angle and transceiver half-angle and the received optical power per unit area. The performance of non-line-of-sight ultraviolet communication system in rain and fog environment is discussed respectively. The results show that the transmission quality of non-line-of-sight ultraviolet atmospheric propagation is greatly affected by the communication distance. As the distance increases, the received light power per unit area gradually decreases. In addition, increasing the emission elevation angle, the receiving elevation angle and the receiving half angle is an important way to improve the system performance.
基金2024 Education and Teaching Reform Project of Hainan Tropical Ocean University(RHYxgnw2024-16)。
文摘This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development.
文摘In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.
文摘In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.
基金supported by the National Natural Science Foundation of China under Grant No.61701284the Innovative Research Foundation of Qingdao under Grant No.19-6-2-1-CG+5 种基金the Elite Plan Project of Shandong University of Science and Technology under Grant No.skr21-3-B-048the Sci.&Tech.Development Fund of Shandong Province of China under Grant Nos.ZR202102230289,ZR202102250695,and ZR2019LZH001the Humanities and Social Science Research Project of the Ministry of Education under Grant No.18YJAZH017the Taishan Scholar Program of Shandong Province,the Shandong Chongqing Science and Technology Cooperation Project under Grant No.cstc2020jscx-lyjsAX0008the Sci.&Tech.Development Fund of Qingdao under Grant No.21-1-5-zlyj-1-zc,SDUST Research Fund under Grant No.2015TDJH102the Science and Technology Support Plan of Youth Innovation Team of Shandong higher School under Grant No.2019KJN024.
文摘With the development of urbanization,the problem of neurological diseases brought about by population aging has gradually become a social problem of worldwide concern.Aging leads to gradual degeneration of the central nervous system,shrinkage of brain tissue,and decline in physical function in many elderlies,making them susceptible to neurological diseases such as Alzheimer’s disease(AD),stroke,Parkinson’s and major depressive disorder(MDD).Due to the influence of these neurological diseases,the elderly have troubles such as memory loss,inability to move,falling,and getting lost,which seriously affect their quality of life.Tracking and positioning of elderly with neurological diseases and keeping track of their location in real-time are necessary and crucial in order to detect and treat dangerous and unexpected situations in time.Considering that the elderly with neurological diseases forget to wear a positioning device or have mobility problems due to carrying a positioning device,device-free positioning as a passive positioning technology that detects device-free individuals is more suitable than traditional active positioning for the home-based care of the elderly with neurological diseases.This paper provides an extensive and in-depth survey of device-free indoor positioning technology for home-based care and an in-depth analysis of the main features of current positioning systems,as well as the techniques,technologies andmethods they employ,fromthe perspective of the needs of the elderly with neurological conditions.Moreover,evaluation criteria and possible solutions of positioning techniques for the home-based care of the elderly with neurological conditions are proposed.Finally,the opportunities and challenges for the development of indoor positioning technology in 6G mobile networks for home-based care of the elderly with neurological diseases are discussed.This review has provided comprehensive and effective tracking and positioning techniques,technologies and methods for the elderly,by which we can obtain the location information of the elderly in real-time and make home-based care more comfortable and safer for the elderly with neurological diseases.
基金Project supported by the Xuzhou Key Research and Development Program (Social Development) (Grant No. KC21304)the National Natural Science Foundation of China (Grant No. 61876186)。
文摘Electroencephalogram(EEG) signals contain important information about the regulation of brain system. Thus, automatic detection of epilepsy by analyzing the characteristics obtained from EEG signals has important research implications in the field of clinical medicine. In this paper, the horizontal visibility graph(HVG) algorithm is used to map multifractal EEG signals into complex networks. Then, we study the structure of the networks and explore the nonlinear dynamics properties of the EEG signals inherited from these networks. In order to better describe complex brain behaviors, we use the angle between two connected nodes as the edge weight of the network and construct the weighted horizontal visibility graph(WHVG). In our studies, fractality and multifractality of WHVG are innovatively used to analyze the structure of related networks. However, these methods only analyze the reconstructed dynamical system in general characterizations,they are not sufficient to describe the complex behavior and cannot provide a comprehensive picture of the system. To this effect, we propose an improved multiscale multifractal analysis(MMA) for network, which extends the description of the network dynamics features by focusing on the relationship between the multifractality and the measured scale-free intervals.Furthermore, neural networks are applied to train the above-mentioned parameters for the classification and identification of three kinds of EEG signals, i.e., health, interictal phase, and ictal phase. By evaluating our experimental results, the classification accuracy is 99.0%, reflecting the effectiveness of the WHVG algorithm in extracting the potential dynamic characteristics of EEG signals.
基金Deanship of Scientific Research at King Khalid University for funding this work through Large Group Research Project(No.RGP2/19/44)。
文摘In a wide variety of mechanical and industrial applications,e.g.,space cooling,nuclear reactor cooling,medicinal utilizations(magnetic drug targeting),energy generation,and heat conduction in tissues,the heat transfer phenomenon is involved.Fourier’s law of heat conduction has been used as the foundation for predicting the heat transfer behavior in a variety of real-world contexts.This model’s production of a parabolic energy expression,which means that an initial disturbance would immediately affect the system under investigation,is one of its main drawbacks.Therefore,numerous researchers worked on such problem to resolve this issue.At last,this problem was resolved by Cattaneo by adding relaxation time for heat flux in Fourier’s law,which was defined as the time required to establish steady heat conduction once a temperature gradient is imposed.Christov offered a material invariant version of Cattaneo’s model by taking into account the upper-connected derivative of the Oldroyd model.Nowadays,both models are combinedly known as the Cattaneo-Christov(CC)model.In this attempt,the mixed convective MHD Falkner-Skan Sutterby nanofluid flow is addressed towards a wedge surface in the presence of the variable external magnetic field.The CC model is incorporated instead of Fourier’s law for the examination of heat transfer features in the energy expression.A two-phase nanofluid model is utilized for the implementation of nano-concept.The nonlinear system of equations is tackled through the bvp4c technique in the MATLAB software 2016.The influence of pertinent flow parameters is discussed and displayed through different sketches.Major and important results are summarized in the conclusion section.Furthermore,in both cases of wall-through flow(i.e.,suction and injection effects),the porosity parameters increase the flow speed,and decrease the heat transport and the influence of drag forces.
基金supported by the National Key R&D Program of China (No.2021YFF0901002)the National Natural Science Foundation of China (No.61802291)+1 种基金Fundamental Research Funds for the Provincial Universities of Zhejiang (GK199900299012-025)Fundamental Research Funds for the Central Universities (No.JB210311).
文摘A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually limited.To enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a mashup.The emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of mashups.Such a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage data.Thus,the question of how to determine the most suitable mashups from big data has become a challenging problem.In this paper,we propose a mashup recommendation framework from big data in mobile networks and the IoT.The proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix factorization.We employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the mashups.We also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization algorithm.We then crawl through a real-world large mashup dataset and perform experiments.The experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.
基金supported by the National Natural Science Foundation of China(Grant No.61872002)Anhui Province Key Research and Development Program Project(Grant No.201904a05020091).
文摘Task offloading is an important concept for edge computing and the Internet of Things(IoT)because computationintensive tasksmust beoffloaded tomore resource-powerful remote devices.Taskoffloading has several advantages,including increased battery life,lower latency,and better application performance.A task offloading method determines whether sections of the full application should be run locally or offloaded for execution remotely.The offloading choice problem is influenced by several factors,including application properties,network conditions,hardware features,and mobility,influencing the offloading system’s operational environment.This study provides a thorough examination of current task offloading and resource allocation in edge computing,covering offloading strategies,algorithms,and factors that influence offloading.Full offloading and partial offloading strategies are the two types of offloading strategies.The algorithms for task offloading and resource allocation are then categorized into two parts:machine learning algorithms and non-machine learning algorithms.We examine and elaborate on algorithms like Supervised Learning,Unsupervised Learning,and Reinforcement Learning(RL)under machine learning.Under the non-machine learning algorithm,we elaborate on algorithms like non(convex)optimization,Lyapunov optimization,Game theory,Heuristic Algorithm,Dynamic Voltage Scaling,Gibbs Sampling,and Generalized Benders Decomposition(GBD).Finally,we highlight and discuss some research challenges and issues in edge computing.